FALL 2017

Qualifying Exam - MA 553

In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide all details of your work.

.....

- 1. (a) (10 points) How many 2-subgroups are in A_4 .
 - (b) (10 points) Show that any Sylow 2- subgroup in S_5 is isomorphic to D_8 .

- 2. Assume G contains a normal Sylow 2-subgroup P which is a cyclic group, and such that G/P is cyclic.
 - (a) Show that the action of G by conjugation on P its trivial.(10 points) (Hint: consider the induced action of G/P on P.)
 - (b) Show that G is abelian. (10 points)

3. (20 points) Show that any group G of order $32\cdot 31$ is solvable.

4. (1) Find all (up to isomorphism) abelian groups of order 40 (10 points).(2) Find the number of elements of order 2 in each of them (10 points).

5. (15 points) Let R be an integral domain and F its field of fractions. Let P be a prime ideal in R and $R_P = \{\frac{a}{b} \mid a, b \in R, b \notin P\} \subset F$. Show that R_P has a unique maximal deal.

- 6. (20 points) Let (R, +,) be a commutative ring with $1 \neq 0$ containing a unique maximal ideal M (i.e. R is a local ring). Show that the following conditions are equivalent:
 - (a) $a \in M$
 - (b) 1 + ca is invertible for any $c \in R$.

7. (25 points) Prove that

- (a) $\mathbb{Q}[x]/(x-a) \simeq \mathbb{Q}$ for any $a \in \mathbb{Q}$. (5 points)
- (b) $\mathbb{Q}[x]/(x^2+1) \simeq \mathbb{Q}[i]$ (5 points)
- (c) Find a simpler form of $\mathbb{Q}[x]/(x^6 x^3)$ (5 points). Prove that
- (d) $\mathbb{Z} \to \mathbb{Z}[i]/(4+i)$, $a \mapsto a + (4+i)$ is surjective.(5 points)
- (e) $\mathbb{Z}[i]/(4+i) \simeq \mathbb{Z}_{17}$ (5 points).

.

8. (35 points)

Let L_1 be the splitting field \mathbb{Q} of $x^3 - 2$ over \mathbb{Q} , and L_2 be the splitting field \mathbb{Q} of $x^2 + 1$ over \mathbb{Q} .

- (a) Determine $[L_1 : \mathbb{Q}]$ (5 points)
- (b) Find the Galois groups $Gal(L_1/\mathbb{Q})$, $Gal(L_2/\mathbb{Q})$ (5 points).
- (c) Find all subfields $K_1 \subset L_1$ such that $[K_1 : \mathbb{Q}] = 2$ (5 points)
- (d) Show that $L_1 \cap L_2 = \mathbb{Q}$. (5 points)
- (e) Determine the degree $[L : \mathbb{Q}]$, and the Galois group of the splitting field L over \mathbb{Q} of $f(x) = (x^3 2)(x^2 + 1)$ (5 points).
- (f) Determine all the subgroups of index 3 in $Gal(L_2/\mathbb{Q})$. (5 points)
- (g) Determine all the subfields $K \subset L$, such that $[K : \mathbb{Q}] = 4$ (5 points).

.

9. (25 points) Let K be the splitting field of

$$f(x) = (x^3 - 1)(x^4 - 1)(x^3 + x^2 + 1)(x^3 + x + 1)$$

over F_2 .

- (a) Decompose f(x) into irreducibles. (5 points)
- (b) Find $[K: F_2]$ (5 points)
- (c) Find the Galois group $Gal(K/F_2)$ and its generator(s) (5 points).
- (d) Find all the subgroups of $Gal(K/F_2)$. (5 points)
- (e) Find all the intermediate fields $F_2 \subseteq E \subseteq K$ (5 points).

.