QUALIFYING EXAM COVER SHEET

August 2022 Qualifying Exams

Instructions: These exams will be “blind-graded” so under the student ID number please use your PUID

ID #: ____________________________
(10 digit PUID)

EXAM (circle one) 530 544 553 554

For grader use:

Points ________ / Max Possible_________ Grade _________
Qualifying Examination
MA 553
August 11, 2022
Time: 2 hours
Instructor: F. Shahidi

PUID: ________________________________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1). (10 pts) a) Show that every solvable group has a non-trivial normal abelian subgroup.

(10 pts) b) Let G be a group and denote by $\text{Aut}(G)$ the group of its automorphisms. Assume $\text{Aut}(G)$ is solvable. Prove that G is solvable.
2). Let p and q be two prime numbers with $p < q$. Let G be a group of order pq.

(a) Assume p does not divide $q - 1$. Show that G is cyclic which is in fact a direct product of a q-Sylow (S_q) subgroup Q and a p-Sylow (S_p) subgroup P of G.

(b) Assume $p | q - 1$ and G is not cyclic. Conclude that in this case G is non-abelian and is a semi-direct product of a S_q-subgroup Q and a S_p-subgroup P of G, but not their direct product.

(c) Let p and q be two primes as above with $p | q - 1$. Let P and Q be the (cyclic) groups of orders p and q, respectively. Show that all the semi-direct products $Q \rtimes_{\varphi} P$, where $\varphi : P \rightarrow \text{Aut}(Q)$ — are non-trivial homomorphisms, are isomorphic. You may assume the fact that finite subgroups of the multiplicative group of a field are cyclic.
(20 pts) 3). Let α be a root of

$$f(x) = x^{23} - 5x^{19} + 25x^{11} - 30x^8 + 35x^5 + 10 = 0$$

Is $\mathbb{Q}(\alpha^{10}) = \mathbb{Q}(\alpha)$? Justify your answer.
4).

(a) Let R be a commutative ring. Let I and J be two ideals in R. Assume P is a prime ideal of R such that $I \cap J \subset P$. Show that either I or J is contained in P.

(b) Show that $f(x, y) = x^2 + xy + y^2 + y$ is irreducible in $\mathbb{Z}[x, y]$.
5).

(10 pts) a) Show that polynomial $f(x) = x^4 + 1$ is irreducible in $\mathbb{Z}[x]$ using Eisenstein Criterion.

(20 pts) b) Show that $f(x) = x^4 + 1$ is reducible modulo every prime p. (Hint: For odd p show that $x^8 - 1$ divides $x^{p^2} - x$ whose roots are elements of a field with p^2 elements.)

Thus a polynomial in $\mathbb{Z}[x]$ could be irreducible over \mathbb{Z}, but reducible over every $\mathbb{Z}/p\mathbb{Z}$, p a prime number.
6).

(5 pts) a) Define the discriminant of a polynomial of degree n over \mathbb{Q}.

(20 pts) b) Use Galois theory to prove that a cubic polynomial over \mathbb{Q}, not necessarily irreducible, has only real roots iff its discriminant is non-negative.
7). (8 pts) a) Using that \(\mathbb{Z}[^{-1}\sqrt{1}] \) is a unique factorization domain (UFD) show that

\[x^3 - (1 + \sqrt{-1}) \]

is irreducible over \(\mathbb{Z}[\sqrt{-1}] \) and \(\mathbb{Q}(\sqrt{-1}) \).

(7 pts) b) Show that the polynomial \(f(x) := x^6 - 2x^3 + 2 \) is irreducible over \(\mathbb{Q} \) which has \(\alpha = 3\sqrt{1 + \sqrt{-1}} \) and \(\beta = 3\sqrt{1 - \sqrt{-1}} \) among its roots. What is \([\mathbb{Q}(\alpha) : \mathbb{Q}]\)?

(10 pts) c) Determine the irreducible polynomial for a primitive 12\(^{th}\) root of unity (12\(^{th}\) cyclotomic polynomial).

(10 pts) d) Let \(L = \mathbb{Q}(\alpha, \beta) \). Show that \(3\sqrt{2} \in L \).

Using part c) prove that \(3\sqrt{2} \notin \mathbb{Q}(\alpha) \).

What is \([L : \mathbb{Q}]\)?

(5 pts) e) Show that \(K = \mathbb{Q}(\alpha, \sqrt{2}, \sqrt{3}) \) is a splitting field for \(f(x) \) over \(\mathbb{Q} \).

(5 pts) f) Show that \(K/\mathbb{Q} \) is an extension by radicals.

Is it solvable? Justify your answer.