1. Calculate
\[\int_{0}^{\infty} \frac{1}{x^n + 1} \, dx \]
for positive integers \(n \geq 2 \) by integrating a complex function around the closed contour that follows the real axis from the origin to \(R > 0 \), then follows the circular arc \(Re^{i\theta} \) as \(\theta \) ranges from zero to \(2\pi/n \), then returns to the origin via the line segment joining \(Re^{2\pi i/n} \) to the origin; let \(R \to \infty \). Show all your calculations and explain all limits.

2. Describe the image of the half-strip \(\{z = x + iy : -1 < x < 1, \ 0 < y < \infty\} \) under the mapping \(f(z) = \frac{z - 1}{z + 1} \).

3. (a) Prove that \(f(z) = 1/z \) does not have a complex antiderivative in \(\mathbb{C} - \{0\} \).
 (b) Find all integers \(n = 0, \pm 1, \pm 2, \ldots \) such that the function \(g(z) = z^n e^{1/z} \) has a complex antiderivative in \(\mathbb{C} - \{0\} \).

4. Let \(f \) be an analytic function with a zero of order 2 at \(z_0 \). Prove that there exist \(\epsilon > 0 \) and \(\delta > 0 \) such that for every \(w \) in \(D_\epsilon(0) - \{0\} \), the equation \(f(z) = w \) has exactly 2 distinct roots in the set \(z \in D_\delta(z_0) - \{z_0\} \).

5. Prove that there is no analytic function that maps the punctured disc \(\{z \in \mathbb{C} : 0 < |z| < 1\} \) one-to-one onto the annulus \(\{z \in \mathbb{C} : 1 < |z| < 2\} \).