MATH 530 Qualifying Exam

January 2024 (S. Bell)
Each problem is worth 20 points

$$
D_{r}(a) \text { denotes the open disc of radius } r \text { about } a
$$

1. Calculate

$$
\int_{0}^{\infty} \frac{1}{x^{n}+1} d x
$$

for positive integers $n \geq 2$ by integrating a complex function around the closed contour that follows the real axis from the origin to $R>0$, then follows the circular arc $R e^{i \theta}$ as θ ranges from zero to $2 \pi / n$, then returns to the origin via the line segment joining $R e^{2 \pi i / n}$ to the origin; let $R \rightarrow \infty$. Show all your calculations and explain all limits.
2. Describe the image of the half-strip $\{z=x+i y:-1<x<1,0<y<\infty\}$ under the mapping $f(z)=\frac{z-1}{z+1}$.
3. (a) Prove that $f(z)=1 / z$ does not have a complex antiderivative in $\mathbb{C}-\{0\}$. (b) Find all integers $n=0, \pm 1, \pm 2, \ldots$ such that the function $g(z)=z^{n} e^{1 / z}$ has a complex antiderivative in $\mathbb{C}-\{0\}$.
4. Let f be an analytic function with a zero of order 2 at z_{0}. Prove that there exist $\epsilon>0$ and $\delta>0$ such that for every w in $D_{\epsilon}(0)-\{0\}$, the equation $f(z)=w$ has exactly 2 distinct roots in the set $z \in D_{\delta}\left(z_{0}\right)-\left\{z_{0}\right\}$.
5. Prove that there is no analytic function that maps the punctured disc $\{z \in \mathbb{C}: 0<|z|<1\}$ one-to-one onto the annulus $\{z \in \mathbb{C}: 1<|z|<2\}$.

