MATH 530 Qualifying Exam

January 2024 (S. Bell)

Each problem is worth 20 points

 $D_r(a)$ denotes the open disc of radius r about a

1. Calculate

$$\int_0^\infty \frac{1}{x^n + 1} \, dx$$

for positive integers $n \geq 2$ by integrating a complex function around the closed contour that follows the real axis from the origin to R > 0, then follows the circular arc $Re^{i\theta}$ as θ ranges from zero to $2\pi/n$, then returns to the origin via the line segment joining $Re^{2\pi i/n}$ to the origin; let $R \to \infty$. Show all your calculations and explain all limits.

- **2.** Describe the image of the half-strip $\{z = x + iy : -1 < x < 1, 0 < y < \infty\}$ under the mapping $f(z) = \frac{z-1}{z+1}$.
- 3. (a) Prove that f(z) = 1/z does not have a complex antiderivative in C−{0}.
 (b) Find all integers n = 0, ±1, ±2,... such that the function g(z) = zⁿe^{1/z} has a complex antiderivative in C − {0}.
- 4. Let f be an analytic function with a zero of order 2 at z_0 . Prove that there exist $\epsilon > 0$ and $\delta > 0$ such that for every w in $D_{\epsilon}(0) \{0\}$, the equation f(z) = w has exactly 2 distinct roots in the set $z \in D_{\delta}(z_0) \{z_0\}$.
- 5. Prove that there is no analytic function that maps the punctured disc $\{z \in \mathbb{C} : 0 < |z| < 1\}$ one-to-one onto the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$.