QUALIFYING EXAMINATION August 2023 MA 553

Problem 1. (17 points) Let $n \ge 4$ be an integer. Prove that every group of order $10 \cdot 3^n$ has a normal subgroup of order 3^k for some $k \ge n-4$.

Problem 2. (21 points) Prove that up to isomorphisms there are at most four groups of order 66. (Hint: Show that a group of order 66 has a cyclic subgroup of order 33.)

Problem 3. (7 points) Let G be a solvable group. Show that G has a composition series if and only if G is finite.

Problem 4. (10 points) Show that if R is a unique factorization domain whose quotient field is isomorphic to \mathbb{R} then $R \cong \mathbb{R}$. (Hint: If R is not a field, then R has a prime element.)

Problem 5. (18 points) Let $\alpha \in \mathbb{C}$ be the root of a polynomial in $\mathbb{Z}[x]$ that is monic (i.e., has leading coefficient 1). Let $\mathbb{Z}[\alpha]$ be the smallest subring of \mathbb{C} containing α , let $q \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} , and write $d = \deg q$. Show that

- (a) $q \in \mathbb{Z}[x];$
- (b) $\mathbb{Z}[\alpha] \cong \mathbb{Z}[x]/(q);$
- (c) as an additive Abelian group, $\mathbb{Z}[\alpha]$ is generated by $\{\alpha^i \mid 0 \le i \le d-1\}$.

Problem 6. (13 points) Let $k \subset K$ be a field extension that is Galois with Galois group G and let L_1, L_2 be intermediate fields. Prove that L_1 and L_2 are isomorphic over k if and only if the subgroups $G(K/L_1)$ and $G(K/L_2)$ of G are conjugate in G.

Problem 7. (14 points) Let $f = x^3 - 3x + 3 \in \mathbb{Q}[x]$ and let K be the splitting field of f over \mathbb{Q} . Determine

- (a) the Galois group $G(K/\mathbb{Q})$ (up to isomorphism);
- (b) the number of distinct subfields of K.