553 QUALIFYING EXAM. FALL 2025

Attempt all questions. Time 2 hrs.

- 1. (10 pts) Let G be a finite group in which $x^2 = e$ for all elements $x \in G$. Prove that the order of G is a power of 2.
- 2. (10 pts) Let p be a prime integer and G be a p-group. If H is a normal subgroup of G and |H| = p, prove that H is contained in the center of G.
- 3. (10 pts) Let p < q be prime numbers such that p divides q 1. Show that there exists a non-abelian group of order pq.
- 4. (10 pts) Let G be the subgroup of $GL_2(\mathbb{R})$ consisting of all matrices of the form

$$\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}.$$

Show that G is a solvable group.

- 5. (10 pts) If A is an integral domain which is not a field, prove that A[x] is not a principal ideal domain.
- 6. (2.5 + 2.5 + 2.5 + 2.5 pts) In which of the following rings is every ideal principal? Justify your answer in each case.

(i)
$$\mathbb{Z} \times \mathbb{Z}$$
, (ii) $\frac{\mathbb{Z}}{(4)}$, (iii) $\frac{\mathbb{Z}}{(6)}[x]$, (iv) $\frac{\mathbb{Z}}{(4)}[x]$.

- 7. (5 + 5 pts) Let R be an integral domain.
 - (a) Define irreducible elements and prime elements of R.
 - (b) Prove that every prime element of R is an irreducible element.
- 8. (5+5 pts) Let p be a prime number and $\phi_p = X^{p-1} + \cdots + 1 \in \mathbb{Q}[X]$. Prove that $K = \mathbb{Q}[X]/(\phi_p)$ is a splitting field of ϕ_p and K/\mathbb{Q} is a Galois extension. What is the Galois group of the extension K/\mathbb{Q} ?
- 9. (2+4+4 pts)
 - (a) Define Galois extensions of fields.
 - (b) State but do NOT prove the Galois correspondence theorem.
 - (c) Describe the Galois correspondence for the extension of \mathbb{Q} by the splitting field of the polynomial X^4-2 .
- 10. (2+4+4 pts)
 - (a) What is a separable field extension?
 - (b) Prove that every irreducible polynomial in k[X] is separable if char k=0.
 - (c) Prove that every irreducible polynomial in k[X] is separable if k is a finite field.