Math 553
January 2025
1/9/25

Name:	
	Qualifying Exam
	10 am-12 pm

- DO NOT open the exam booklet until you are told to begin. You should write your name and read the instructions.
- Organize your work, in a reasonably neat and coherent way, in the space provided. If you wish for something to not be graded, please strike it out neatly. I will grade only work on the exam paper, unless you clearly indicate your desire for me to grade work on additional pages.
- You may use any results from class, homework, or Dummit and Foote that do not trivialize the problem, but you must cite the result you are using.
- You may use a fact without proof if its verification is straightforward and you explicitly say so.
- You needn't spend your time rewriting definitions or axioms on the exam.
- You may not use any aids including any electronics.
- When you have completed your test, hand it to me.

Problem	Points	Score
1	20	
2	25	
3	10	
4	30	
5	35	
Total:	120	

- 1. Let G be the permutation group S_5 acting on the set $\{1, 2, 3, 4, 5\}$. Let H be the stabilizer of the element 5.
 - (a) (10 points) The group $H \times H$ acts on G by left and right multiplication: $(h_1, h_2) \cdot g = h_1 g h_2^{-1}$. Determine the number of orbits for this action. Prove your answer.

(b) (10 points) Find a subgroup $K \subset G$ such that G is a semidirect product of K and H, or show that that no such subgroup exists.

2. (10 points) (a) (5 points) Find generators for the normalizer in S_6 of the subgroup H generated by (12), (34), and (56).

(b) (5 points) Show that any 2-Sylow subgroup of S_6 containing H is contained in the normalizer of H.

(c) (5 points) Find generators for a Sylow-2-subgroup of S_6 containing H in 2(a).

3. (10 points) Let k be a field and k(t) be the field of rational functions in one variable t over k. Find an element in k(t) whose square is $t \in k(t)$, or show that no such element exists.

- 4. (10 points) Let p be a prime number.
 - (a) (10 points) Show that $x^p x a \in \mathbb{F}_p[x]$ is irreducible for all $a \in \mathbb{F}_p^{\times}$. Hint: Look at the action of the Frobenius automorphism.

(b) (10 points) Show that the splitting fields of $x^p-x-a\in\mathbb{F}_p[x]$ for $a\in\mathbb{F}_p^{\times}$ are all isomorphic.

- 5. Let $\alpha = \sqrt{1 + \sqrt{3}} \in \mathbb{R}$ where for a positive real number $r, \sqrt{r} \in \mathbb{R}$ denotes the positive square root.
 - (a) (5 points) Find, with proof, the minimal (monic degree 4) polynomial $f(x) \in \mathbb{Q}[x]$ of α over \mathbb{Q} . Make sure to explain why your answer is irreducible!

(b) (10 points) Let K be a splitting field over $\mathbb{Q}(\alpha)$ of f(x) from 5(a). Show that $[K:\mathbb{Q}]=8$.

(c) (10 points) The group $G = \operatorname{Gal}(K/\mathbb{Q})$ acts faithfully on the roots of the polynomial f(x) from 5(a). Order the 4 roots in the sequence $\alpha, -\alpha, \beta_1, \beta_2$ to identify G with a subgroup of S_4 , and find generators in S_4 for this subgroup.

(d) (10 points) Show that there are exactly three subfields of K which are quadratic extensions of \mathbb{Q} . Find generators for these subfields over \mathbb{Q} .