Math 554

1. Let $A \in M_{4 \times 5}(\mathbb{Z})$ and define

$$\phi_A: \mathbb{Z}^5 \longrightarrow \mathbb{Z}^4$$

by $\phi_A(X) = AX$, $X \in \mathbb{Z}^5$. Is it true that if ϕ_A is surjective, then the determinant of some 4×4 minor of A is a unit in \mathbb{Z} ? Justify your answer.

2. Suppose A and B are two commuting linear operators on a finite dimensional complex vector space. Show that they share a non-zero eigenvector.

(10 points)

3. Determine all the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ whose kernel and image are equal. Is this possible for \mathbb{R}^5 ? Justify your answer.

4. A linear transformation N is nilpotent if $N^m = 0$ for some non-negative integer m. Suppose N_1 and N_2 are nilpotent. Is it true that N_1N_2 is nilpotent? Justify your answer.

(10 points)

5. Suppose $A \in M_{5\times 6}(\mathbb{R})$ has rank 5. Prove or disprove that $AA^T \in M_{5\times 5}(\mathbb{R})$ is non-singular. (15 points) 6. Let $A = \mathbb{R}[x]$ be the polynomial ring in one variable x. Express the A-module $A^3/\langle f_1, f_2, f_3 \rangle$, where $f_1 = (x - 2, 0, 0)$, $f_2 = (4, 4, -x)$, and $f_3 = (x, x, -1)$, as a direct sum of cyclic A-modules. In particular, state whether this module is a cyclic A-module.

7. Classify all the non–isomorphic finite abelian groups of order 9800.

8. Write the minimal polynomial $m_T(x)$, rational canonical form R, and Jordan Canonical form J for

$$T = \begin{bmatrix} 6 & 3 & 6 \\ 1 & 4 & 2 \\ -2 & -2 & -1 \end{bmatrix}.$$

(25 points)

- 9. a) Define the following notions for a complex inner product space:
 - 1) adjoint A^* of an operator A,
 - 2) a Hermitian (self-adjoint) operator,
 - 3) a skew-Hermitian operator,
 - 4) a unitary operator,
 - 5) a normal operator.

In what follows all the inner product spaces are finite dimensional.

- b) Give an example of an infinite set of normal operators neither of which are Hermitian, nor skew-Hermitian, nor unitary.
- c) Show that an operator A is normal iff $A^* = f(A)$ for some $f(x) \in \mathbb{C}[x]$.
- d) Suppose A is both normal and nilpotent, i.e. $A^m = 0$ for some non-negative integer m. Show that A = 0.
- d) Suppose A is normal and $A^6 = A^5$. Conclude that A is idempotent, i.e. $A^2 = A$. (20 points)

10. Let N be a normal operator on a finite dimensional complex inner product space. Let W be a subspace invariant under N, i.e. $N(W) \subset W$. Show that W^{\perp} is also invariant under N.

(10 points)

11. Determine all the 2×2 complex matrices which are both skew-Hermitian and unitary and conclude that every such matrix is a product of an imaginary scalar matrix and Hermitian matrix whose diagonal entries are either 1 and -1, or zeros. Note that non-unitary skew-Hermitian 2×2 complex matrices give an infinite family of normal operators which are neither unitary nor Hermitian.