Attempt all questions. Time 2 hrs.

1. (10 pts) Let V be a complex vector space and \(L \in \text{End}(V) \). Let \(\alpha \in V \) such that \(L^m \alpha = 0 \), and \(L^{m-1} \alpha \neq 0 \), for some positive integer \(m \). Prove that \(\alpha, L\alpha, \ldots, L^{m-1}\alpha \) are linearly independent.

2. (10 pts) Let \(V \) be a finite dimensional vector space over a field \(k \), and \(W \) a subspace of \(V \). Let \(L \in \text{End}(V) \) such that \(\text{Im}(L) \subset W \). Let \(L' \in \text{End}(W) \) denote the restriction of \(L \) to \(W \). Prove that
\[
\det(Id_V + \lambda L) = \det(Id_W + \lambda L')
\]
as elements of \(k[\lambda] \).

3. (10 pts) Let \(E, F, G, H \) be four finite dimensional vector spaces over a field \(k \) and \(u : E \to F, v : F \to G, w : G \to H \) be linear transformations. Prove that
\[
\text{rk}(v \circ u) + \text{rk}(w \circ v) \leq \text{rk}(v) + \text{rk}(w \circ v \circ u),
\]
where \(\text{rk}(\cdot) \) denotes the rank.

4. (5 + 5 pts) Let \(L, L' \) be endomorphisms of a finite dimensional vector space \(V \) over a field \(k \). Prove or disprove (by providing a counter-example) the following statements.
 (a) Every eigenvalue of \(L \circ L' \) is also an eigenvalue of \(L' \circ L \).
 (b) Every eigenvector of \(L \circ L' \) is also an eigenvector of \(L' \circ L \).

5. (5 + 5 + 5 pts) Let \(A \) be a complex \(n \times n \) matrix all of whose entries are equal to 1.
 (a) Find the characteristic polynomial of \(A \).
 (b) Is \(A \) diagonalizable? Prove or disprove.
 (c) Find the Jordan canonical form of \(A \).

6. (5 + 5 + 5 pts) Let \(V \) be a finite dimensional complex Hermitian space and \(u \in \text{End}(V) \).
 (a) Define the adjoint of \(u \) and prove that it exists.
 (b) Prove that if \(u \) is self-adjoint then the eigenvalues of \(u \) are all real.
 (c) Prove that if \(u \) is self-adjoint then \(u \) is diagonalizable.

7. (5 + 5 pts) Let \(V \) be the vector space of complex \(n \times n \) matrices, \(A \in V \), and \(C(A) \subset V \) the set of \(n \times n \) complex matrices which commutes with \(A \).
 (a) Prove that \(C(A) \) is a subspace of \(V \).
 (b) Prove that \(\dim C(A) \geq n \).

8. (5 + 10 + 5 pts) Let \(V \) be a finite dimensional complex Hermitian vector space.
 (a) What does it mean to say that \(U \in \text{End}(V) \) is a unitary transformation?
 (b) Suppose that \(U \in \text{End}(V) \) is unitary. Prove that \(U \) is diagonalizable, and if \(\lambda \) is an eigenvalue of \(U \), then \(|\lambda| = 1 \).
 (c) Let \(L \in \text{End}(V) \) such that \(\text{Id}_V + L, \text{Id}_V + L^2, \text{Id}_V + L^3 \) are all unitary. Prove that \(L = 0 \).