PUID: ________________________________

Instructions:
1. The point value of each exercise occurs to the left of the problem.
2. No books or notes or calculators are allowed.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points Possible</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
1. (12 pts) Let V be a finite-dimensional vector space over a field F and let W_1 and W_2 be subspaces of V. Prove that
\[\dim W_1 + \dim W_2 = \dim (W_1 \cap W_2) + \dim (W_1 + W_2). \]

2. (6 pts) Let V be a finite-dimensional vector space over the field F and let W be a subspace of V. If f is a linear functional on W, prove that there is a linear functional g on V such that $g(\alpha) = f(\alpha)$ for each vector α in the subspace W.
3. Let V and W be finite-dimensional vector spaces over a field F, and let $T: V \to W$ be a linear transformation.

 (a) (2 pts) Define the rank of T.

 (b) (2 pts) Define the nullity of T.

 (c) (10 pts) State and prove a theorem involving the rank of T and the nullity of T.

4. (8 pts) Let F be an infinite field and let $g \in F[x]$ be a monic polynomial of degree $n > 0$.

 (a) Describe the ideals in $F[x]$ that contain g.

 (b) Are there finitely many or infinitely many ideals in $F[x]$ that contain g?
5. (12 pts) Let F be a field, let S be a set, and let $F(S,F)$ be the set of all functions from S to F.

(a) As in Chapter 2 of Hoffman and Kunze, define vector addition and scalar multiplication on the set $F(S,F)$ so that $F(S,F)$ is a vector space over the field F.

(b) If S is a finite set with n elements what is the dimension of the vector space $F(S,F)$? Justify your answer.

6. (6 pts) State true or false and justify your answer: If V is a finite-dimensional vector space and W_1 and W_2 are subspaces of V such that $V = W_1 \oplus W_2$, then for any subspace W of V we have $W = (W \cap W_1) \oplus (W \cap W_2)$.
7. Define the following terms as in Hoffman and Kunze.

(a) (4 pts) \(\mathfrak{A} \) is a linear algebra over the field \(F \).

(b) (4 pts) The vector space \(V \) of polynomial functions over a field \(F \).

(c) (4 pts) The vector space \(F[x] \) of polynomials over a field \(F \).

8. (6 pts) For what fields \(F \) is the vector space of polynomial functions over \(F \) isomorphic to the vector space of polynomials over \(F \)? Justify your answer.
9. Let D be a principal ideal domain and let M be a finitely generated D-module.

(a) (3 pts.) What does it mean for a subset $S = \{z_1, \ldots, z_n\}$ of M to be a generating set for M?

(b) (3 pts.) What does it mean for a subset $S = \{z_1, \ldots, z_n\}$ of M to be a basis for M.

(c) (6 pts.) What does it mean for a matrix $A \in D^{m \times n}$ to be a relation matrix for M? How is a relation matrix for M constructed?

(d) (6 pts.) State true or false and justify your answer with either a proof or a counterexample: Every nonzero finitely generated D-module has a basis.
10. (20 pts) Let $T : V \to V$ be a linear operator on an n-dimensional vector space V, and let \mathcal{F} be the vector space of linear operators $U : V \to V$ that commute with T.

(a) Prove that $\dim \mathcal{F} \geq n$.

(b) Prove that T has a cyclic vector if and only if every $U \in \mathcal{F}$ is a polynomial in T.
11. (20 pts) Let \(V \) be an abelian group generated by elements \(a, b, c \). Assume the following relations hold: \(2a = 4b, 2b = 4c, 2c = 4a \), and these three relations generate all the relations on \(a, b, c \).

(a) Write down a relation matrix for \(V \).

(b) Find generators \(x, y, z \) for \(V \) such that \(V = \langle x \rangle \oplus \langle y \rangle \oplus \langle z \rangle \) is the direct sum of cyclic subgroups generated by \(x, y, z \), and express your generators \(x, y, z \) in terms of \(a, b, c \).

(c) What is the order of \(V \)?

(d) What is the order of the element \(a \)?
12. (10 pts) Let V be a finite-dimensional vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.

13. (10 pts) Let V be a finite-dimensional vector space over an infinite field F and let $\alpha_1, \ldots, \alpha_m$ be finitely many nonzero vectors in V. Prove that there exists a linear functional f on V such that $f(\alpha_i) \neq 0$ for each i with $1 \leq i \leq m$.
14. (18 pts) Let $T : V \to V$ be a linear operator on an n-dimensional vector space over a field F. Let c_1, \ldots, c_k be distinct elements in F and let $p = (x - c_1)^{r_1} \cdots (x - c_k)^{r_k}$ be the minimal polynomial of T. Let $W_i = \{ v \in V \mid (T - c_i I)^{r_i}(v) = 0 \}$.

(a) Describe linear operators $E_i : V \to V$, $i = 1, \ldots, k$, such that $E_i(V) = W_i$, $E_i^2 = E_i$ for each i, $E_i E_j = 0$ if $i \neq j$, and $E_1 + \cdots + E_k = I$ is the identity operator on V.

(b) Describe how to obtain linear operators D and N such that $T = D + N$, where D is diagonalizable, N is nilpotent and D and N are polynomials in T.

(c) If $T = D' + N'$, where D' is diagonalizable and N' is nilpotent and $D'N' = N'D'$, prove that $D = D'$ and $N = N'$.
15. (18 pts) Let notation be as in the previous problem and let \(f = (x - c_1)^{d_1} \cdots (x - c_k)^{d_k} \) be the characteristic polynomial for \(T \). Thus \(n = d_1 + \cdots + d_k \) and \(1 \leq r_i \leq d_i \) for each \(i \).

(a) If \(r_i + 1 = d_i \) for each \(i \in \{1, \ldots, k\} \), describe the Jordan form for \(T \).

(b) If \(r_i + 2 = d_i \) for each \(i \in \{1, \ldots, k\} \), how many different Jordan forms are possible for \(T \)?

(c) If \(r_i + 3 = d_i \) for each \(i \in \{1, \ldots, k\} \), how many different Jordan forms are possible for \(T \)?
16. (10 pts.) Let V be an n-dimensional vector space over a field F.

(a) True or false: Every monic polynomial in $F[x]$ of degree n is the characteristic polynomial of some linear operator on V. Justify your answer.

(b) True or false: Every monic polynomial in $F[x]$ of degree n is the minimal polynomial of some linear operator on V. Justify your answer.