1. (5 + 10 pts)
 (a) Let V be a vector space over a field k, and $S \subset V$. What does it mean to say that S is linearly independent?
 (b) Let $u \in \text{End}(V)$. Suppose there exists $\alpha \in V$, and $m > 0$, such that

 \[u^m(\alpha) = 0, u^{m-1}(\alpha) \neq 0. \]

 Prove that $S = \{\alpha, u(\alpha), \ldots, u^{m-1}(\alpha)\}$ is linearly independent.

2. (5 + 10 pts) Let V be a finite dimensional vector space over a field k and $u \in \text{End}(V)$.
 (a) Define $\text{rank}(u)$.
 (b) Prove that
 \[2 \cdot \text{rank}(u^2) \leq \text{rank}(u) + \text{rank}(u^3). \]

3. (5 + 10 pts) Let V be a finite dimensional complex inner product space and $u \in \text{End}(V)$.
 (a) What does it mean to say that u is normal?
 (b) Prove that u is normal if and only if there exists an orthonormal basis of V consisting of eigenvectors of u.

4. (10 + 10 pts) Let V be a finite-dimensional vector space over a field k. Let $u, v \in \text{End}(V)$.
 Prove or disprove (with an example) the following statements.
 (a) Every eigenvector of $u \circ v$ is also an eigenvector of $v \circ u$.
 (b) Every eigenvalue of $u \circ v$ is an eigenvalue of $v \circ u$.

5. (5 + 10 pts) Let V be an n-dimensional complex inner product space.
 (a) Define unitary transformations of V.
 (b) Suppose that $u, v \in \text{End}(V)$ are unitary transformations. Prove that
 \[|\text{det}(u + v)| \leq 2^n. \]

6. (5 + 5 + 10 pts)
 (a) State but do not prove the additive Jordan decomposition theorem for finite dimensional complex vector spaces.
 (b) Suppose that V is a finite dimensional complex vector space and $u \in \text{End}(V)$. Let
 $\text{ad}(u) : \text{End}(V) \to \text{End}(V)$ be the map defined by
 \[\text{ad}(u)(v) = u \circ v - v \circ u \]
 for each $v \in \text{End}(V)$.
 (i) Prove that ad is a linear map $V \to \text{End(End}(V))$ (and so in particular $\text{ad}(u) \in \text{End(End}(V))$ for each $u \in \text{End}(V)$).
 (ii) Let $u \in \text{End}(V)$ and suppose that $u = u_s + u_n$ is the additive Jordan decomposition of u. Prove that $\text{ad}(u_s) + \text{ad}(u_n)$ is the additive Jordan decomposition of $\text{ad}(u)$.