554 QUALIFYING EXAM, AUG 11, 2023

Attempt all questions. Time 2 hrs.

1. $(5+10 \mathrm{pts})$
(a) When are two $n \times n$ complex matrices similar ?
(b) Can an $n \times n$ complex matrix A be similar to the matrix $A+\mathrm{Id}_{n}$?
2. $(5+10 \mathrm{pts})$
(a) Let V be a finite dimensional complex vector space and $u \in \operatorname{End}(V)$. What does it mean to say that u is diagonalizable ?
(b) Let V be the vector space of complex 2×2 matrices and $u: V \rightarrow V$ be the map that takes each matrix to its transpose. Prove that u is a diagonalizable endomorphism of V.
3. ($5+10 \mathrm{pts}$) Let V be a finite dimensional complex inner product space and $u \in \operatorname{End}(V)$.
(a) What does it mean to say that u is self-adjoint?
(b) If u is self-adjoint prove that all eigenvalues of u are real.
4. ($5+10 \mathrm{pts}$) Let V be a finite dimensional complex inner product vector space and $u, v \in$ End (V).
(a) What does it mean to say that u is normal ?
(b) Prove that if u is normal, then $u^{*}=p(u)$ for some polynomial $p \in \mathbb{C}[X]$.
5. (10 pts) Let A be a 3×5, and B a 5×3 complex matrix such that

$$
A B=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Find the Jordan canonical form of the matrix $B A$.
6. (10 pts) Let V be a finite dimensional complex vector space, and let F be a set of diagonalizable endomorphisms of V. Prove that the set F is simultaneously diagonalizable if and only if for each $u, v \in F, u \circ v=v \circ u$.
7. $(5+10+5 \mathrm{pts})$ Let V be a finite dimensional complex inner product space.
(a) What does it mean to say that $u \in \operatorname{End}(V)$ is a unitary transformation?
(b) Suppose that $u \in \operatorname{End}(V)$ is unitary. Prove that U is diagonalizable, and if λ is an eigenvalue of u, then $|\lambda|=1$.
(c) Let $v \in \operatorname{End}(V)$ such that $\operatorname{Id}_{V}+v, \operatorname{Id}_{V}+v^{2}, \operatorname{Id}_{V}+v^{3}$ are all unitary. Prove that $v=0$.

