554 QUALIFYING EXAM, AUG 11, 2023

Attempt all questions. Time 2 hrs.

- 1. (5 + 10 pts)
 - (a) When are two $n \times n$ complex matrices similar ?
 - (b) Can an $n \times n$ complex matrix A be similar to the matrix $A + Id_n$?
- 2. (5 + 10 pts)
 - (a) Let V be a finite dimensional complex vector space and $u \in \text{End}(V)$. What does it mean to say that u is diagonalizable ?
 - (b) Let V be the vector space of complex 2×2 matrices and $u : V \to V$ be the map that takes each matrix to its transpose. Prove that u is a diagonalizable endomorphism of V.
- 3. (5 + 10 pts) Let V be a finite dimensional complex inner product space and $u \in \text{End}(V)$. (a) What does it mean to say that u is self-adjoint ?
 - (b) If u is self-adjoint prove that all eigenvalues of u are real.
- 4. (5+10 pts) Let V be a finite dimensional complex inner product vector space and $u, v \in \text{End}(V)$.
 - (a) What does it mean to say that u is normal?
 - (b) Prove that if u is normal, then $u^* = p(u)$ for some polynomial $p \in \mathbb{C}[X]$.
- 5. (10 pts) Let A be a 3×5 , and B a 5×3 complex matrix such that

$$AB = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right].$$

Find the Jordan canonical form of the matrix BA.

- 6. (10 pts) Let V be a finite dimensional complex vector space, and let F be a set of diagonalizable endomorphisms of V. Prove that the set F is simultaneously diagonalizable if and only if for each $u, v \in F$, $u \circ v = v \circ u$.
- 7. (5 + 10 + 5 pts) Let V be a finite dimensional complex inner product space.
 - (a) What does it mean to say that $u \in End(V)$ is a unitary transformation?
 - (b) Suppose that $u \in \text{End}(V)$ is unitary. Prove that U is diagonalizable, and if λ is an eigenvalue of u, then $|\lambda| = 1$.
 - (c) Let $v \in \text{End}(V)$ such that $\text{Id}_V + v$, $\text{Id}_V + v^2$, $\text{Id}_V + v^3$ are all unitary. Prove that $v = \mathbf{0}$.