554 QUALIFYING EXAM. SPRING 2025

Attempt all questions. Time 2 hrs.

1. (10 pts) Let V be a n-dimensional complex vector space and $u \in \text{End}(V)$ such that $u^2 = \text{Id}_V$. Prove that

$$rank(Id_V + u) + rank(Id_V - u) = n.$$

- 2. (5+5+5 pts)
 - (a) Prove that a non-zero nilpotent square matrix with complex entries is not diagonalizable.
 - (b) Prove that if A is a complex $n \times n$ matrix such that $A^k = \mathrm{Id}_n$ for some k > 0, then A is diagonalizable.
 - (c) Find the possible Jordan canonical forms of an $n \times n$ complex idempotent matrix A (i.e. having the property that $A^2 = A$).
- 3. (5 + 5 pts) Let V be a complex inner product space and $\alpha_1, \ldots, \alpha_m \in V$. Prove that $\alpha_1, \ldots, \alpha_m$ are linearly dependent if and only if the determinant of the gram matrix

$$G(\alpha_1, \dots, \alpha_m) = ((\alpha_i, \alpha_j))_{1 \le i, j \le m}$$

is equal to 0.

- 4. (10 + 10 pts) Let V be a finite dimensional complex vector space, and let F be a set of diagonalizable endomorphisms of V. Prove that the set F is simultaneously diagonalizable if and only if for each $u, v \in F$, $u \circ v = v \circ u$.
- 5. (10 + 5 + 5 pts) Let A be a complex $n \times n$ matrix, $n \ge 2$, all of whose entries are equal to 1.
 - (a) Find the characteristic and minimal polynomials of A?
 - (b) Is A diagonalizable? Justify your answer.
 - (c) Find the Jordan and the rational canonical forms of A.
- 6. (5 + 10 + 10 pts) Let V be a finite dimensional complex inner product space.
 - (a) What does it mean to say that $u \in \text{End}(V)$ is a unitary transformation?
 - (b) Suppose that $u \in \text{End}(V)$ is unitary. Prove that U is diagonalizable, and if λ is an eigenvalue of u, then $|\lambda| = 1$.
 - (c) Let $v \in \text{End}(V)$ such that $\text{Id}_V + v, \text{Id}_V + v^2, \text{Id}_V + v^3$ are all unitary. Prove that $v = \mathbf{0}$.