Qualifying Examination January 2009 Math 562 – Professor Donnelly

- 1. Show that $x^3z^2 z^3xy = 0$ is solvable for z as a function of (x, y) near (1, 1, 1) but not near the origin. Compute z_x and z_y at (1, 1).
- 2. Let M be a connected manifold and $p, q \in M$. Show that there exists a diffeomorphism ϕ with $\phi(p) = q$.
- 3. Is RP^n orientable?
- 4. Show that the only solutions on R^3 of both $(\partial_x + x\partial_y)f = 0$ and $(\partial_y + y\partial_z)f = 0$ are constant.
- 5. What is the geometrical significance of the differential form

$$\phi = r^{-n} \sum_{i=1}^{n} (-1)^i x_i dx_1 \wedge dx_2, \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_n, \text{ where } r^2 = \sum_{i=1}^{n} x_i^2?$$

- 6. Let $X \in \mathfrak{sl}(2,R)$. If det X > 0, show that $e^X = \cos(\det X)^{1/2} I + \sin(\det X)^{1/2} X / (\det X)^{1/2}$. What are the corresponding formulas when det $X \leq 0$?
- 7. Does there exist a function on the two torus having exactly three critical points?
- 8. Show that the space of derivations $D:C^1(p)\to R$ is infinite dimensional.
- 9. Let $\gamma(t)$ be a 1-parameter subgroup of a Lie group. Suppose that $\gamma(t)$ intersects itself. Prove that $\gamma(t) = \gamma(t+L)$, for some L and all t.
- 10. Show that the system of equations

$$3x + y - z + u^{2} = 0$$
$$x - y + 2z + u = 0$$
$$2x + 2y - 3z + 2u = 0$$

defines an embedded submanifold in \mathbb{R}^4 . Which of the coordinates x,y,z,u can serve as parameters?