Qualifying Exam August 2011

- 1. Let C be the unit circle in R^2 and S the boundary of the unit square centered at the origin. Show that there is no diffeomorphism $F: R^2 \to R^2$ with F(C) = S.
- 2. Suppose that V is a 3-dimensional vector space with basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$. Show that V may be given the structure of a Lie algebra so that $[\vec{v}_1, \vec{v}_2] = \vec{v}_3, [\vec{v}_1, \vec{v}_3] = [\vec{v}_2, \vec{v}_3] = 0$. Prove that every two dimensional subalgebra contains \vec{v}_3 .
- 3. Does there exist a C^{∞} vector field on S^n which vanishes at a) exactly two points, b) exactly one point?
- 4. Let N be a submanifold contained in a manifold M. Suppose $\gamma:(a,b)\to M$ is a C^{∞} curve such that $\gamma(a,b)\subset N$. Show by example that it is not necessarily true that $\dot{\gamma}(t)\in T_{\gamma(t)}N$, for each $t\in(a,b)$.
- 5. Define $\omega=(x+y)dz-(y+z)dx+(x+z)dy$ and suppose S denotes the set where $x^2+y^2+z^2=1$ and $z\geq 0$. Evaluate $\int_{\partial S}\omega$ both directly and by Stokes' theorem.
- 6. Suppose that $S^* = S^3 (0, 0, 0, 1)$, where S^3 denotes the three sphere $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$. Define vector fields V and W by $V = (1 x_4 x_1^2, -x_1x_2, -x_1x_3, x_1(1 x_4))$ and $W = (-x_1x_2, 1 x_4 x_2^2, -x_2x_3, x_2(1 x_4))$. Show that V and W are tangent to S^* and linearly independent.
- 7. If k is a real number, show that a nonempty subset T^k of S^* , defined by $x_3 + kx_4 = k$, $kx_3 x_4 \neq 0$, is a two dimensional submanifold. Here one uses the notation of Problem 6. Is the inequality $kx_3 x_4 \neq 0$ a consequence of the other hypotheses?
- 8. Show that each T^k is an integral manifold of the distribution spanned by V and W. Is this an involutive distribution on all of S^* ?
- 9. If two maps f and g from X to S^p satisfy ||f(x) g(x)|| < 2, for all x, prove that f is homotopic to g, the homotopy being smooth if f and g are smooth.
- 10. Suppose that p denotes the distance from the center of the ellipsoid Σ , $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, to the tangent plane at the point P(x, y, z). Compute $\iint_{\Sigma} pdS$ and $\iint_{\Sigma} \frac{1}{p} dS$, where dS is the area element.