Math 562: Summer 2016 Qualifying Exam (McReynolds)

PUID Number:_____

Work **<u>four out of five</u>** of the following problems. The time limit is two hours. Please explicitly indicate which four problems you want graded.

Problem 1. [15 points]

Let *M* be a smooth connected manifold without boundary. We say $p \sim q$ for $p, q \in M$ if there exists a diffeomorphism $f: M \longrightarrow M$ such that f(p) = q.

- (a) Prove that \sim is an equivalence relation.
- (b) Prove that for any $p, q \in M$, there exists a diffeomorphism $f: M \to M$ such that f(p) = q.

Problem 2. [15 points]

Prove that if $f: X \to Y$ is a smooth function with f transverse to a submanifold Z of Y and $S \subset X$ is a submanifold such that S and $f^{-1}(Z)$ are transverse, then $f_{|S|}$ is transverse to Z.

Problem 3. [15 points]

Let *Y* be a compact, orientable manifold with compact *n*-dimensional submanifolds *X*, *Z* such that $X \cup Z = Y$ and $X \cap Z$ is a (n-1)-dimensional submanifold. Prove that $\chi(Y) = \chi(X) + \chi(Z) - \chi(X \cap Z)$.

Problem 4. [15 points] Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x,y) = (x^2 + y, y^2 - x)$. Compute $df_p, f^*(dx), f^*(dy)$, and $f^*(dx \wedge dy)$.

Problem 5. [15 points]

(a) Let *M* be a compact, orientable (k + 1)-manifold with boundary ∂M . Let $f: \partial M \to N$ be a smooth map and $\omega \in \Omega^k(N)$ be a closed form. Prove that if *f* can be extended to a smooth map $F: M \to N$, then

$$\int_{\partial M} f^*(\boldsymbol{\omega}) = 0.$$

(b) Let S^1 be the unit circle in \mathbb{R}^2 and D^2 the unit disk with $\partial D^2 = S^1$. Prove that the smooth function $f: S^1 \to S^1$ given by f(x,y) = (-x, -y) can not be smoothly extended to D^2 .