MA 562 Qualify Exam January 2018

1. Let $\mathbb{S}^2 = \{(x,y,z); x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ be the unit sphere. Denote the north pole by N = (0,0,1) and the south pole by S = (0,0,-1). Denote $U_1 = \mathbb{S}^2 \setminus \{N\}$ and $U_2 = \mathbb{S}^2 \setminus \{S\}$. For any $p \in S^2 \setminus \{N\}$, denote by \overline{pN} the line in \mathbb{R}^3 passing through p and N. Use similar notation for \overline{pS} .

The stereographic projection $\Phi_1: U_1 = \mathbb{S}^2 \setminus \{N\} \to \mathbb{R}^2 = \{(x,y,0); (x,y) \in \mathbb{R}^2\}$ is defined as:

$$\Phi_1(p) = \overline{pN} \cap \{z = 0\}, \quad \text{for any } p \in U_1.$$

Similarly $\Phi_2: U_2 := \mathbb{S}^2 \setminus \{S\} \to \mathbb{R}^2$ is defined as

$$\Phi_2(p) = \overline{pS} \cap \{z = 0\}, \quad \text{for any } p \in U_2.$$

Prove that $(U_1 = \mathbb{S}^2 \setminus \{N\}, \Phi_1)$, $(U_2 = \mathbb{S}^2 \setminus \{S\}, \Phi_2)$ define a differentiable structure on \mathbb{S}^2 . What is the transition function between these two coordinate charts?

- 2. Is there a smooth vector field on the 2-dimensional torus $S^1 \times S^1$ with a single zero point? What is the index of that zero point if such a vector field exists?
- 3. Denote by $M = \operatorname{Mat}_{3\times 2}(\mathbb{R}) \cong \mathbb{R}^6$ the set of 3×2 real matrices. A^T denotes the transpose of A. Prove that the set $N = \{A \in \operatorname{Mat}_{3\times 2}(\mathbb{R}); A^TA = I_2\}$ is a smooth manifold. What is its dimension?
- 4. Prove the following result:

Let M be a smooth manifold. A smooth 1-form ω on M is an exact form if and only if, for any closed piece-wisely smooth curve C on M, $\int_C \omega = 0$.

- 5. Let $i: M \to N$ be an immersed submanifold and X be a smooth vector field on M.
 - (a) If M is a smooth embedded submanifold, prove that there exists a smooth vector field \tilde{X} on N such that $\tilde{X}_p = i_*(X_p)$ for any $p \in M$.
 - (b) Is the above statement true if i is only an injective immersion but not an embedding?
- 6. Consider the distribution Δ on \mathbb{R}^3 defined as the kernel of α where:

$$\alpha = ydx - xdy + dz.$$

In other words, $\Delta_p = \text{Ker}(\alpha_p)$ for any $p \in \mathbb{R}^3$. Is the distribution Δ integrable?

1