1. Let X and Y be topological spaces and suppose that X is locally connected. Let $h : X \to Y$ be a function with the property that the restriction of h to each component of X is continuous. **Prove** that h is continuous.

2. Let X be a topological space and let A be a connected subspace of X. **Prove** that \overline{A} is connected. (This is a special case of a theorem in Munkres).

3. Let X be a topological space and let Y be a compact topological space. Let $\pi_1 : X \times Y \to X$ be the projection. Let $W \subset X \times Y$ be open. **Prove** that the set $S = \{x \in X | \pi_1^{-1}(x) \subset W\}$ is open.

4. Let X be a compact topological space and let \sim be an equivalence relation on X with the property that X/\sim is Hausdorff. Let \sim' be the equivalence relation on $X \times [0, 1]$ defined by $(x, t) \sim' (x_1, t_1) \iff x \sim x_1$ and $t = t_1$. **Prove** that $(X \times [0, 1])/\sim'$ is homeomorphic to $(X/\sim) \times [0, 1].$

5. Let X and Y be topological spaces and let $h : X \to Y$ be a continuous function which induces the trivial homomorphism of fundamental groups. Let $x_0, x_1 \in X$ and let f and g be paths from x_0 to x_1. **Prove** that $h \circ f$ and $h \circ g$ are path homotopic.

6. Let X be \mathbb{R}^3 with the z-axis removed, and let x_0 be the point $(1, 0, 0)$. What is $\pi_1(X, x_0)$? **Prove** that your answer is correct. You can just write down the formula for any deformation retraction that you use, you don’t have to prove that it’s continuous.

7. Let $p : E \to B$ be a covering map. Let $b_0 \in B$ and let U be an evenly covered neighborhood of b_0. **Prove** that $p^{-1}(b_0)$ (considered as a subspace of E) is discrete.