- 1. A job takes 4 hours for two people working together. If one person works alone he can do the job in 6 hours. How long will it take the other person working alone to complete the job?

 A. 4 hrs. B. 6 hrs. C. 8 hrs. D. 10 hrs. E. None of the above.
- 2. Let x and y be two consecutive positive integers such that x is less than y and the difference of their squares is 145. Find x.

A. 73 B. 72 C. 12 D. 8 E. None of the above.

- 3. A truck enters a freeway traveling 40 mph. One hour later a car enters the same freeway traveling 55 mph. After how many miles will the car overtake the truck?
 A. 146²/₃ miles B. 201²/₃ miles C. 120 miles D. 106²/₃ E. None of the above.
- 4. How many ml of a 50% acid solution should be added to 40 ml of a 20% acid solution to obtain a solution that is 25% acid?

A. 10 ml B. 8 ml C. 6 ml D. 4 ml E. None of the above.

- 5. The base of a triangle is three inches more than its height. If each is increased by 3 inches the area is 14 square inches. Find the original base, b, and original height, h, in inches. A. b = 4, h = 1 B. b = 9, h = 6 C. b = 8, h = 5 D. $b = \frac{7}{2}$, $h = \frac{1}{2}$ E. None of the above.
- 6. Determine $(g \circ f)(x)$ for the following functions: $f(x) = 1 \sqrt{x}$ and $g(x) = \frac{1}{x}$.

A.
$$-\sqrt{x}$$
 B. $1 - \sqrt{\frac{1}{x}}$ C. $1 - \sqrt{x}$ D. $\frac{1}{1 - \sqrt{x}}$ E. $\frac{1}{\sqrt{x}}$

- 7. If $f(x) = \frac{x}{x^2 + 1}$, find $\frac{1}{f(3)}$.
 - A. $\frac{3}{10}$ B. $\frac{3}{16}$ C. $\frac{16}{3}$ D. $\frac{10}{3}$ E. None of the above.
- 8. If $f(x) = \frac{1}{3x-2}$, find the inverse function, $f^{-1}(x)$.

A.
$$f^{-1}(x) = 3x + 2$$
 B. $f^{-1}(x) = \frac{1+2x}{3x}$ C. $f^{-1}(x) = \frac{1}{2-3x}$ D. $f^{-1}(x) = \frac{3}{x+6}$

E. None of the above.

- 9. If $f(x) = x^2 2x + 4$ then $\frac{f(x+h) f(x)}{h} =$ A. 2x + h - 2 B. x + 2h - 2 C. x + 2h + 2 D. 2x - h - 2 E. 2x - h + 2.
- 10. A square of side x is inscribed in a circle. Express the area, A, of the circle as a function of x. A. $A = \frac{\pi}{2}x^2$ B. $A = x^2$ C. $A = \pi x^2$ D. $A = \frac{\pi}{4}x^2$ E. None of the above.
- 11. An aquarium in the shape of a rectangular box is to have a height of 1.5 feet and a volume of 6 cubic feet. Let x denote the length of the base and y the width of the base. Express y as a function of x.

A.
$$y = 1.5x$$
 B. $y = \frac{4}{x}$ C. $y = x^2$ D. $y = \frac{6}{x}$ E. $y = 9x$

- 12. Find the vertex of the parabola $x^2 4x 2y 4 = 0$. A. (2, -2) B. (2, -4) C. (-4, 2) D. (-2, 4) E. (-2, 2)
- 13. Find an equation of a quadratic function whose graph has the points (1,0), (-1,0) and (0,2). A. $y=2x^2+2$ B. $y=-2x^2+2$ C. $y=-2x^2-2$ D. $y=2x^2-2$ E. $y=-(x-2)^2$

14. The figure below most closely resembles the graph of which function?

A.
$$y = (\frac{1}{2})^x$$
 B. $y = 2^x$ C. $y = -2^x$ D. $y = -(\frac{1}{2})^x$ E. $y = 1 - 2^x$

15. Express as one logarithm: $\log_b y^3 + \log_b y^2 - \log_b y^4$.

A. $\log_b y^2$ B. $\log_b y$ C. $\log_b (y^3 + y^2 - y^4)$ D. $\log_b \frac{y^3 + y^2}{y^4}$ E. None of the above.

16. Which are true of the function $f(x) = \log_a x$ if a > 1? I. f is an increasing function. II. f has a as an x intercept. III. f has 1 as a y intercept. IV. The domain of f is $(0, \infty)$. List all correct answers.

A. I, II and III B. I and II C. II and IV D. I and IV E. I and III

17. Which of the following is equal to $\log \left(\frac{432}{\sqrt{.095}\sqrt[3]{72.1}} \right)$?

A. $\log 432 - \frac{1}{2} \log .095 - 3 \log 72.1$ B. $\log 432 - \frac{1}{2} \log .095 - \frac{1}{3} \log 72.1$ C. $\log 432 - 2 \log .095 + 3 \log 72.1$ D. $\log 432 - \frac{1}{2} \log .095 + \frac{1}{3} \log 72.1$

E. $\log 432 - 2 \log .095 - 3 \log 72.1$

- 18. If $\log_x 2 = 5$, solve for x. Give you answer correct to four decimal places. A. 2.2361 B. 1.4142 C. 0.6990 D. 1.1487 E. 0.3010
- 19. Evaluate: $\frac{\log_5 \frac{1}{8}}{\log_5 2}$.

A.-4 B. $-\frac{1}{3}$ C. $-\frac{1}{4}$ D. -3 E. None of the above.

20. Solve for $x: 3^{x-5} = 4$.

A. $x = \log 4 + 5 \log 3$ B. $x = 5 + \log(4/3)$ C. $x = 5 + \frac{\log 4}{\log 3}$

D.
$$x = 5 + \log 4$$
 E. $x = \frac{5 + \log 4}{\log 3}$

21. Solve for $x : \log_3 \sqrt{2x+3} = 2$.

A. x = 5/2 B. x = 3/2 C. x = 39 D. x = 17 E. x = 3

22. Given that $\log_3 m = 8$, $\log_3 n = 10$ and $\log_3 p = 6$. Calculate $\log_3 \left(\frac{\sqrt{mn}}{n^3}\right)$.

A. -9 B. $\frac{2\sqrt{5}}{27}$ C. 22 D. -56 E. -4

23. A radioactive substance decays according to $q(t) = q_0 e^{-0.0063t}$ where q_0 is the initial amount of the substance and t is the time in days. Find the half-life of the substance to the nearest tenth of a day.

A. 110.0 days B. 47.8 days C. 0.5 days D. 2.0 days E. Cannot be determined.

- 24. The graph of $y = 2 + 2^x$ crosses the y-axis at: A. 0 B. 1 C. 2 D. 3 E. 4
- 25. Determine where the graphs of the equations x + 4y = 3 and 2x 6y = 8 intersect. A. $\left(-\frac{12}{5}, \frac{6}{5}\right)$ B. $\left(\frac{1}{3}, \frac{4}{9}\right)$ C. $\left(\frac{2}{7}, \frac{5}{7}\right)$ D. $\left(\frac{1}{8}, \frac{2}{5}\right)$ E. None of the above.
- 26. Determine where the graphs of the equations $x^2 + y^2 = 16$ and 2y x = 4 intersect. A. $(-4,0), (\frac{12}{5}, \frac{16}{5})$ B. $(0,2), (\frac{16}{5}, \frac{18}{5})$ C. $(-4,0), (-\frac{7}{2}, \frac{1}{4})$ D. $(4,0), (-\frac{12}{5}, \frac{16}{5})$ E. None of the above.
- 27. Solve the following system of equations for z.

$$x+y-z=-1$$

$$4x-3y+2z=16$$

$$2x-2y-3z=5$$

A.
$$z = \frac{13}{17}$$
 B. $z = 1$ C. $z = -2$ D. $z = -\frac{29}{27}$ E. $z = 2$

- 28. Find the quotient q(x) and the remainder r(x) if $x^4 2x^2 3$ is divided by $x^2 6x$.
 - A. $q(x) = x^2 x + 5$, r(x) = 3x + 2 B. $q(x) = x^2 2$, r(x) = x + 5
 - C. $q(x) = x^2 + 6x + 34$, r(x) = 204x 3 D. $q(x) = x^2 6x + 4$, r(x) = 24x 3
 - E. None of the above.
- 29. List all places where the graph of $f(x) = \frac{x^2 9}{x^2 + 2x}$ has vertical asymptotes. A. x = 0 B. x = 2 C. x = 0, x = -2 D. x = 3, x = -3 E. None of the above.
- 30. Given $f(x) = x^2(x-1)(x+1)^2$. For what values of x is f(x) < 0? A. $(-\infty, -1) \cup (-1, 0) \cup (0, 1)$ B. $(-\infty, -1) \cup (-1, 0) \cup (1, \infty)$ C. $(-1, 0) \cup (1, \infty)$ D. $(-\infty, -1) \cup (-1, 1)$ E. None of the above.
- 31. Considering the graph of $f(x) = \frac{x-2}{x+2}$, which statement is true?
 - A. f(x) is decreasing and has a Range of $(-\infty, -1) \cup (-1, \infty)$
 - B. f(x) is decreasing and has a Range of $(-\infty, 1) \cup (1, \infty)$
 - C. f(x) is increasing and has a Range of $(-\infty, 2) \cup (2, \infty)$
 - D. f(x) is decreasing and has a Range of $(-\infty, 2) \cup (2, \infty)$
 - E. f(x) is increasing and has a Range of $(-\infty, 1) \cup (1, \infty)$
- 32. If the graphs of two functions f and g are as sketched below, which of the following is true?

- A. g(x) = -f(x-1) 2 B. g(x) = f(-x-1) 2 C. g(x) = -f(x+1) 2
- D. g(x) = -f(-x+1) 2 E. None of the above.

- 33. If θ is in the second quadrant and $\sin \theta = 0.6$, find $\cos \theta$. A. -0.75 B. 0.2 C. -0.8 D. 0.8 E. None of the above.
- 34. The angles with measures listed are all coterminal except: A. $\frac{\pi}{3}$ B. $-\frac{5\pi}{3}$ C. -300° D. 420° E. -60°
- 35. The radian measure of an angle of 135° is: A. $\frac{5\pi}{4}$ B. $\frac{3\pi}{2}$ C. $\frac{3\pi}{4}$ D. $\frac{7\pi}{8}$ E. None of the above.
- 36. Use a calculator to find the $\sec 126^\circ$ correct to 4 decimal places. A. 1.2361 B. -0.5878 C. -1.7013 D. -1.2361 E. None of the above.
- 37. The point (12,-16) is on the terminal side of the angle θ . Find $\tan \theta$. A. $\frac{5}{3}$ B. $-\frac{5}{4}$ C. $\frac{4}{3}$ D. $\frac{4}{5}$ E. None of the above.
- 38. Find the exact value of $\tan 120^{\circ}$. A. $-\sqrt{3}$ B. $-\frac{1}{\sqrt{3}}$ C. $\sqrt{3}$ D. $\frac{1}{\sqrt{3}}$ E. None of the above.
- 39. If the diameter of a circle is 4, find the length of arc cut off by a central angle of 30°. (Give your answer to 3 decimal places.)

 A. 1.047 B. 2.361 C. 3.142 D. 3.681 E. None of the above.
- 40. The graph of $y = 3 + \sin x$: I. crosses the y-axis at 3; II. crosses the x-axis at multiples of π ; III. is always above the x-axis; IV. has period 2π . (Choose all the correct answers.)
 - A. I, II B. I, III, IV C. I, II, IV D. II, IV E. None of the above.
- 41. Give the domain, D, and the range, R, of $f(x) = \cos x$. A. D = set of all real numbers, R = [-1, 1]. B. $D = [0, \infty)$, R = set of all real numbers. C. $D = [0, 2\pi]$, R = [-1, 1]. D. D = set of all real numbers, $R = [0, 2\pi]$. E. None of the above.
- 42. The expression $\frac{\tan^2 x}{1 + \sec x}$ is identically equal to: A. 1 B. $\sec x - 1$ C. $\tan x + \sin x$ D. $\tan^2 x + \sin x \tan x$ E. $\csc x + \sin x$
- 43. Simplify: $\frac{\tan x \cos x \csc x}{\cot x \sec x \sin x}.$ A. $\tan^2 x \cos^2 x \sin^2 x$ B. 1 C. $\csc^2 x$ D. 0 E. $\tan^2 x$
- 44. Given $\cos \theta = 3/4$ and $270^{\circ} < \theta < 360^{\circ}$, find $\sin 2\theta$. A. $\frac{-3\sqrt{7}}{8}$ B. $\frac{-\sqrt{7}}{4}$ C. $\frac{-1}{8}$ D. $\frac{1}{8}$ E. $\frac{3\sqrt{7}}{8}$
- 45. A wire is attached to the top of a radio antenna and to a point on horizontal ground that is 40.0 meters from the base of the antenna. If the wire makes an angle of 58°20′ with the ground, approximate the length of the wire to the nearest tenth of a meter.

 A. 47.0 m B. 76.2 m C. 47.1 m D. 75.9 m E. None of the above.
- 46. From a point P on level ground the angle of elevation of the top of the tower is $26^{\circ}50'$. From a point 25.0 meters closer to the tower and on the same line with P and the base of the tower, the angle of elevation of the top of the tower is $43^{\circ}30'$. Find the height of the tower correct to one decimal place.
 - A. 39.3 meters B. 12.6 meters C. 27.1 meters D. 23.7 meters E. None of the above.

47. Which polar equation best describes the graph given below?

A. $r = (1 + \sin \theta)$ B. $r = (1 + \cos \theta)$ C. $r = (1 - \sin \theta)$ D. $r = 2\cos \theta$ E. $r = 2\sin \theta$

- 48. Give polar coordinates of a point whose rectangular coordinates are (-2, 3). A. $(\sqrt{13}, -56.3^{\circ})$ B. $(\sqrt{13}, 123.7^{\circ})$ C. $(13, -33.7^{\circ})$ D. $(13, 146.3^{\circ})$ E. $(\sqrt{13}, 146.3^{\circ})$
- 49. Find a polar equation which has the same graph as the equation $x^2 2x + y^2 = 0$. A. r = 1 B. r = 2 C. $r = 2\sin\theta$ D. $r = 2\cos\theta$ E. $r = \sqrt{2\cos\theta}$

SOLUTION

1. E [12 hrs]; 2. B; 3. A; 4. B; 5. A; 6. D; 7. D; 8. B; 9. A; 10. A; 11. B; 12. B; 13. B; 14. A; 15. B; 16. D; 17. B; 18. D; 19. D; 20. C; 21. C; 22. A; 23. A; 24. D; 25. E $[(\frac{25}{7}, -\frac{1}{7})]$; 26. A; 27. B; 28. C; 29. C; 30. A; 31. E; 32. C; 33. C; 34. E; 35. C; 36. C; 37. E $[-\frac{4}{3}]$; 38. A; 39. A; 40. B; 41. A; 42. B; 43. B; 44. A; 45. B; 46. C; 47. A; 48. B; 49. D.