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The focusing gKdV 

Consider 
ut = −(uxx + u 5)x , u(0, x) = u0 ∈ L2(R). 

The sign − makes it focusing. 

This equation is called mass-critical because the scaling leaving the equation 
invariant, i.e. � � 

1 
u(t, x) 7→ λ 2 u λ3t, λx 

leaves the L2 norm, or mass, invariant. The mass of a solution, defined by Z 
M(u(t)) := |u(t, x)|2dx 

R 

is conserved. 
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Ben Dodson proved that in the defocusing case, there does not exist a nonzero, 
almost periodic solution, which implies scattering for the defocusing equation. 
The proof uses interaction Morawetz estimates. 

Definition 1 (Almost periodic solution) 

Suppose v is a strong solution to gKdV on the maximal interval of existence I . 
Such a solution v is said to be almost periodic (modulo symmetries) if there 
exist continuous functions N(t) : I → (0, ∞) and x(t) : I → R, such that 

{v(t, x) = N(t)−1/2 u(t, N(t)−1 x + x(t)) : t ∈ I } 

is contained in a compact subset of L2(R). 
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The soliton 

For the focusing gKdV, there exists the soliton u(t, x) = Q(x − t), where 

31/4 

Q(x) = > 0. 
cosh1/2(2x) 

The function Q(x) solves the elliptic equation 

Qxx + Q5 = Q, 

Therefore, Q(x − t) solves gKdV and Q(x − t) is an almost periodic solution. 
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In a remarkable series of works, Martel and Merle proved, among many nice 
results, the instability of the soliton in an H1 sense, for initial data with mass 
greater than or equal to the soliton. In fact, they proved something more, that 
there initial data arbitrarily close to the soliton in H1-norm, which eventually 
move away from the soliton in an L2 -sense. 

Conjecture: 
If ku0kL2 < kQkL2 , then the solution is globally well-posed and scattering. 
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Main result 

We show that there are no solutions which are uniformly close to Q(x) in L2 
x 

modulo symmetries. 

Definition 2 
If a maximal-lifespan strong solution u to gKdV on I satisfies 

sup inf ku(t, x) − 
t∈I λ0,x0 

1 x − x0
Q( )kL2(R) ≤ δ 

1/2
λ λ0 
0 

(1) 

then we say u is δ-close to Q. 

The main result is 

Theorem 3 (G-Dodson) 

There exists δ > 0 sufficiently small such that there does not exist a 
maximal-lifespan solution to gKdV with ku0kL2 < kQkL2 satisfying (1). 
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We say that u scatters forward/backwards in time if there exists a unique 
u± ∈ L2 

x (R) such that 


 −t∂3 
u(t) − e x u± 




 = 0.lim 
t→±∞ L2(R)x 

The symmetry group G is defined as �� 
G = {gx0,λ : L

2 
x (R) → L2 

x (R)| (x0, λ) ∈ R×(0, ∞), gx0,λf (x) := λ− 
2
1 
f λ−1 (x − x0) }. 

For u : I × R → R �� 
− 1 −3 −1 u(t, x) := λ 2 u λ t, λ (x − x0) .Tgx0,λ 
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Local theory 

The L2 local well-posedness of gKdV was established by Kenig, Ponce, Vega in 
1993: 

Theorem 4 (Local well-posedness) 

For any u0 ∈ L2 
x (R) and t0 ∈ R, there exists a unique solution u with 

u (t0) = u0 which has maximal lifespan. Let I denote the lifespan of u. Then: 

1. I is an open neighborhood of t0. 

2. If sup(I )/ inf(I ) is finite then u blows up forward / backward in time. 

3. If sup (I ) = +∞ and u does not blow up forward, then u scatters. 

4. If M (u0) is small then u is global solution and does not blow up either 
forward or backward in time. 

Short time stability also holds. 
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The embedding of NLS into gKdV 

A tool is an approximation of solutions to gKdV by certain modulated, rescaled 
versions of solutions to NLS originating in work of Christ, Colliander, T. Tao, 
and developed further by Killip, Kwon, Shao, Visan. 

⎧ h �i ⎪ ixξn λn +it(ξn λn )
3 TRe e Vn 3ξnλnt, x + 3(ξnλn)

2t , when |t| ≤⎪⎪ 3ξn λn⎨ n � � o � � 
T T T ũn

T (t, x) := exp − t − ∂x 
3 ũn , when t >

3ξn λn 3ξn λn 3ξn λnn � � o � �⎪⎪⎪ T T T⎩ ∂3 exp − t + x ũn − , when t < −
3ξn λn 3ξn λn 3ξn λn 

is defined in terms of certain frequency-localized solutions Vn to NLS. 
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Airy linear profile decomposition of Shao 

Let vn : R → R be a sequence of functions bounded in L2 
x (R). Then, after 

passing to a subsequence, there exist functions φj : R → C in L2 
x (R), 

jgn := g j j
xn ,λn 

∈ G , ξj n 
j∈ [0, ∞) and tn ∈ R 

vn = 
X jj −t ∂3 λj 

n ixξj n j J g n φne x Re[e ] + wn , ∀J ≥ 1 
1≤j≤J 

Jfor some real-valued sequence w in L2 (R) with n x 

−t∂3 Jlim lim sup ke x wn kL5 L10 = 0.(R×R)x tJ→∞ n→∞ 

One has X 
ixξj λj j J n

nkvnk2 
L2 − kRe[e n φ ]k2 

L2 − kwn k2 
L2 −→ 0. 

1≤j≤J 

The family of sequences Γn
j = (λn

j , ξn
j , xn

j , tn
j ) ∈ (0, ∞) × R3 are pair-wise 

asymptotically orthogonal. 
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The proof of the theorem splits into two parts. 

The first part reduces the study to the existence of almost-periodic solutions. 

1. If u : I × R → R is solution with ku0kL2 < kQkL2 which is δ-close to Q. 
Then there exists an almost periodic such solution. 

Once we have this reduction, we prove that such solutions cannot exist. 

2. There are no almost periodic solutions with mass less than Q which are 
δ-close to Q. 

presentation by Cristian Gavrus Instability of the soliton for gKdV 



The proof of the first part consists of the following Palais-Smale -type 
proposition, inspired from Killip, Kwon, Shao, Visan, which is used to extract 
subsequences convergent in L2 . 

Lemma 5 
Let un : In × R → R be solutions δ-close to Q, i.e. for some continuous 
gn : In → G one has 

kgn(t)un(t) − QkL2 ≤ δ ∀ t ∈ In, n ≥ 1. (2) 

Suppose M(un) & m0 = and let tn ∈ In be a sequence of times. Then the 
sequence gn(tn)un(tn) has a subsequence which converges in L2 to a function φ 
with M(φ) = m0. 

Here m0 is the infimum of the masses of solutions δ -close to Q. 
We apply this twice. 
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Step 1 - Decomposing the sequence 

Assume all tn = 0, gn(0) are the identity. 

By Banach-Alaoglu, we obtain a function φ1 ∈ L2 such that 

un(0) * φ1 weakly in L2 . 

Assuming kφ1k2 
L2 < m0 and we will obtain a contradiction. 

Using the profile decomposition, write for any J ≥ 2 X 
1 j −tj ∂3 ixξj λj j Jn nun(0) − φ = gne x Re[e n φ ] + wn . 

2≤j≤J 

The terms j ≥ 2 satisfy a smallness condition. 
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Step 2 - Construct nonlinear profiles 

Let v 1 : I × R → R be the solution with data v 1(0) = φ. 

j
nA) For j ∈ 2, J0 ≡ 0. Can reduce to either: one has ξ

j
n

j j (0) = ReφjI ≡ 0, let vWhen t be the solution with v . 
−t∂3 

x Reφjj
n

jI → ±∞, let vIf t be the solution which scatters to e . 

j
n

j
nB) For j ∈ J0 + 1, J ξ →∞. Take the solution with data λ

jṽn(t
j
n) = e −tjn ∂

3 ixξjn λ
j
nφj ]Re[ex

For both A) and B) obtain nonlinear profiles 

v j
n(t) := T j

ng
[v j(· + t jn)](t), j ∈ 2, J0, n ≥ 1, 

the decoupling property holds 

lim kv j
nv k 

n
t

k 5 = 0 ∀ 1 ≤ j < k 
L5n→∞ 2Lx (I ×R) 
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Step 3 - Construct approximate solutions and bound the difference 

Construct the approximate solution and the remainders rn
J by 

JX 
J 1 j −t∂3 J ũn (t) := v (t) + vn(t) + e x wn . 

j=2 

un(t) = ũn
J (t) + rn

J (t). 

Divide [0, t] into small intervals [tk , tk+1] and by induction prove 

lim lim sup krnJ (t)kL2 = 0. 
J→∞ n→∞ 

This follows from stability if one checks: 

J ε0
lim sup kũn kL5 L10 ≤([tk ,tk+1]×R)x t n→∞ 2 

3 J Jlim lim sup k |∂x |−1 [(∂t + ∂x )ũn − ∂x (ũn )
5]kL1 L2 = 0. 

x tJ→∞ 
([tk ,tk+1]×R) 

n→∞ 
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jStep 4 - vn(t) converges weakly to 0 

� � 
j j j j t 

n n n n jA) ξj ≡ 0. Then v (t) = g v t + 
(λ )3 

. By passing to a subsequence, 
n 

assume 
t 

tn
j + 

j → Tj ∈ [−∞, ∞]. 
(λn)3 

If Tj the claim reduces to gn
j v j (Tj ) * 0. If Tj → ±∞ we use scattering and 

apply the dispersive estimate. 

B) ξn
j λn

j →∞. Using the approximation involving NLS solutions (in Killip, 
Kwon, Shao, Visan), one can reduce the claim to 

±iθn −sn ∂
3 

e g j e x [e ±ixξn λn W (T1)] * 0,
zn,λn 

These limits are proved in Shao’s paper. 

From A) and B) we conclude vn
j (t) * 0, ∀ t ∈ R, j ≥ 2. 
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Step 5 - Prove the first profile is δ -close to Q 

JX 
1 j −t∂3 J J un(t) = v (t) + vn(t) + e x wn + rn (t). 

j=2 

Expand 

δ2 ≥ kun(t) − gn(t)
−1Qk2 

L2 = kv 1(t) − gn(t)
−1Qk2 

L2 + AJ
n (t) + Bn

J (t) 

JX 
j −t∂3 J JAJ

n(t) := k vn(t) + e x wn + rn (t)k2 
L2 

j=2 

JX 
BJ 1 (t)−1 j −t∂x 

3 
w J J 

n n n n(t) := 2hv (t) − gn Q , v (t) + e + r (t)i. 
j=2 

Extract a subsequence such that gn(t) converges to some g(t). 
Note AJ

n (t) ≥ 0 and limJ→∞ lim supn→∞ Bn
J (t) = 0. In the limit 

kg(t)v 1(t) − QkL2 ≤ δ ∀t ∈ I . 

This means v 1 is δ−close to Q with M(v 1) < m0, a contradiction. 
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The main result in now reduced to the case of almost periodic solutions. Now 
combine ideas from the following results: 

I B. Dodson - defocusing case. Scattering reduced to 3 scenarios: a 
self-similar solution, a double rapid cascade solution, and a quasisoliton 
solution. 

I Merle (energy space) 

I Martel-Merle (Liouville theorem for gKdV). 

I Martel-Merle (instability of soliton) 

I Martel-Merle (blow-up). 

Rely on Morawetz arguments from these papers. 
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Step 6 

Begin with studying N(t). Show can be reduced to N(t) ≥ 1 and Z 
N(t)2dt = ∞. 

I 

1) Scenario N(t) ∼ 1 for any t ∈ [0, ∞). Taking 

u(tn, x − x(tn)) → u0 

generates a solution with 

{u(t, x − x(t)) : t ∈ R} is precompact. (3) 

2) Scenario 
lim inf N(t) = 0. 

T →∞ t∈[0,T ] 
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2A) 
sup N(t)t∈[t0(T ),T ]

lim sup < ∞ 
T →sup(I ) N(t0(T )) 

where � 
t0(T ) = inf t ∈ [0, T ] : N(t) = inf N(t) 

t∈[0,T ] 

Can choose a sequence such that 

2k/2 0 0 u(tk , 2
k (x − x(tk ))) → u0, in L2(R), 

generates a solution satisfying (3). 

2B) 
supt∈[t0(T ),T ] N(t)

lim sup = ∞. 
T →sup(I ) N(t0(T )) 

This case is handled by Morawetz estimates and a partition of intervals. 
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Step 7 - Decomposition near a soliton 

Recall 
x − x0(t)ku − λ0(t)

−1/2Q( )kL2 < 2δ, 
λ0(t) 

Lemma 6 
There exist x(t) and λ(t) such that 

�(t, y) := λ(t)1/2 u(t, λ(t)y + x(t)) − Q(y) 

satisfies 
Q

(yQy , �) = (y( + yQy ), �) = 0. (4)
2 

Moreover, 
λ0(t) x0(t) − x(t)| − 1| + | | + k�kL2 . δ. (5)
λ(t) λ(t) 

This lemma was proved when u was close to Q in H1 norm by Martel-Merle. It 
is based on the implicit function theorem. 
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Step 8 - Exponential decay 

Lemma 7 (Exponential decay to the left of the soliton) 

6ku(t, x + x(t))k2 
L2(x≤−x0) 

≤ 10c1e − 
x0 
, x0 � 1. 

The proof is based on the fact that u is close to a soliton, and the soliton 
moves to the right while a dispersive solution moves to the left. 

Idea: consider Z 
u(t, x)2

1 
I (t) = ψ(x − x̃(0) + x0 − (x̃(t) − x̃(0)))dx . 

4 

and show Z 
−x0 3− (x̃(t)−x̃(0)) ˙I 0(t) ≤ Ce K e 4K x̃(t) λ(t)2 u(t, x)6dx . 

This will lead to a contradiction. 
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Lemma 8 (Exponential decay to the right of the soliton) 

6ku(t, x + x(t))k2 
L2(x≥x0) 

≤ 10c1e − 
x0 
. 

As a consequence, computing with the functional Z 
x 

M(t) = χ( )u(t, x + x(0))2dx , 
x0 

and with d M(t) one will obtain that there does not exist a solution satisfying 
dt Z sup(I ) Z 0 

N(t)2dt < ∞, N(t)2dt = ∞, 
0 inf(I ) 

or vice-versa. 
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Step 9 - Virial identities 

Working with Z 
J(s) = λ(s)1/2 

Z x Q
�(s, x) ( 

−∞ 2 
+ zQz )dzdx − λ(s)1/2κ 

and with Z 
d 
J(s) = 2λ(s)1/2 Q(y)�(s, y)dy + O(λ(s)k�k2 

L2 ) + O(λ(s)k�kL2 k�k4 
L8 )

ds 

one proves Z T Z Z T 

| λ(s)1/2 �(s, x)Q(x)dxds| . C (u) + λ(s)1/2k�(s)kL
2
2 ds. 

0 0 
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To finish the proof, one uses a second virial identity using Z 
M(s) = 

1 
λ(s) y �(s, y)2dy . 
2 

After computations one obtains Z Z 
δ1 

T MK T 

λ(s)1/2
MK 

λ(s)k�k2 k�k2 
H1 ds . L2 ds + C (u) + C (u). 

8 0 Rδ1 0 Rδ1 

If λ(s) = 1 one obtains a contradiction as in Martel-Merle. 

In the general case, the proof will make use of the fact that λ(s) ≤ 1 along 
with the fact that conservation of energy gives a lower bound on λ(s). 
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Thank you for listening! 
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