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Main problem

We study the limit as e — 0 of the solution u€ of the following
fractional reaction-diffusion PDE:

€

SO = —(—A)ur — W (“) inR* x R
€
uc(0,-) = uo(-) onR

(1)

where €, § > 0 are small scale parameters and § = §. — 0 as e — 0,
W is a multi-well potential with nondegenerate minima at integer
points and up is non-decreasing.
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We study the limit as e — 0 of the solution u€ of the following
fractional reaction-diffusion PDE:

(1)

SO = —(—A)ur — W (“) inR* x R
€
uc(0,-) = uo(-) onR

where €, § > 0 are small scale parameters and § = §. — 0 as e — 0,
W is a multi-well potential with nondegenerate minima at integer
points and up is non-decreasing.

@ If e =1, (1) is a fractional Allen-Cahn problem
(Gonzéalez-Monneau);

@ If § =1, (1) is a homogenization problem (Monneau-P.);

@ We do not assume any assumption about how ¢ goes to 0 when
e — 0.
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Allen-Cahn equations

@ Classical Allen-Cahn equation (Chen): for n > 2,

onu’ = AU’ — %W’(u‘s) in R* x R”

with a suitable initial condition, u°(0, X) = up(x), 0 < up < 1,
where W is a double well potential with minima at 0 and 1.

@ n=1, works by Fife and co.

@ The stationary case previously studied by Modica and Mortola.
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Fractional Allen-Cahn equations

@ When A is replaced by —(—A)%u, s € (0, 1), the motion of
forming interphases in dimension n > 2 studied by Imbert,
Souganidis;

@ Stationary case, n > 2: Savin, Valdinoci (non-local version of
Modica-Mortola);

@ In dimension 1, Gonzalez and Monneau studied

Vo — %W’(v‘s) inR* xR
with a well-prepared initial condition. Here W is a multi-well
potential.

o=

SOV = —(—A)
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Dislocations

Dislocations are defect lines in crystalline solids whose motion is
directly responsible for the plastic deformation of these materials.
Their typical length is of order of 10~8m with thickness of order of
10-°m.

Geometry of an edge dislocation
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Dislocations can be described at several scales by different models:

@ atomic scale (Frenkel-Kontorova model)
@ microscopic scale (Peierls-Nabarro model)
© mesoscopic scale (Discrete dislocation dynamics)

© macroscopic scale (elasto-visco-plasticity with density of
dislocations)
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The Peierls-Nabarro model

We consider a straight dislocation line parallel to es.

I,=0
= 2
1,=0 2o
1= 2
)=
e L. ) L.
2 e
el
Figure 2: Schematic view of a edge dislocation in
Figure 1: Perfect crystal the crystal
Assumptions

@ the dislocation defects are described by the mismatch between the two
planes b =0and L = —1

@ the displacement of the crystal is antysimmetric wrt the plane eje;
@ any atoms move only in the direction e
@ the displacement is independent of e;
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The Peierls-Nabarro model

The P-N model is a continuous model where a dislocation is
described by means of a scalar phase field defined over the slip
plane.

The medium will be R2, endowed with coordinates (x, y).

The disregistry of the upper half crystal {y > 0} relative to the lower
half {y < 0} is given by ¢(x), which is a transition between 0 and 1:

¢(—00) =0, ¢(+00) =1
¢’ > 0.
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The Peierls-Nabarro model

The total energy is given by
1

€=~
2 RxR+

IVU(x, y)|2dxdy+/ W(U(x,0))dx

elastic energy misfit energy

where U : R x R™ — R represents (twice) the (scalar) displacement
and it is such that

U(x,0) = ¢(x).
The potential W satisfies
@ W(u+1)= W(u) Yu e R (periodicity)
@ W(Z)=0< W(u) VYueR\Z (minimum property)
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The Peierls-Nabarro model

A critical point of the energy satisfies

AU(x,y)=0 (x,y) e R x Rt
oy U(x,0) = W'(U(x,0)) xeR
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The Peierls-Nabarro model

A critical point of the energy satisfies

AU(x,y)=0 (x,y) e R x Rt
oy U(x,0) = W'(U(x,0)) xeR

The system can be rewritten for

¢(x) = U(x,0)
as follows 1
—(-8)2¢g=W'(¢) InR
where
(—=A)2v =F'(|¢|F(v)) forany v e S(R")

and F is the Fourier transform. If v € C1:(R) N L(R), n = 1,

loc
~ayiv=prl [0
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The Peierls-Nabarro model

The phase transition ¢ (also called layer solution) therefore satisfies

A= W) inR
¢ >0
(;5(—00) =0, ¢(+OO) =1, ¢(O) = %
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The Peierls-Nabarro model

The phase transition ¢ (also called layer solution) therefore satisfies

A= W) inR
¢ >0
(;5(—00) =0, ¢(+OO) =1, ¢(O) = %

In the original PN model:
1
W(u) = 2 (1 — cos(2wu))

and

d(x) = % + %arctan(Zx)
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The Peierls-Nabarro model

—(-0)26=W'(¢) inR
¢ >0
$(~00) =0, ¢(+00) =1, ¢(0)=3

@ Existence, uniqueness by Cabré, Sola-Morales. Asymptotic
estimates by Gonzalez, Monneau;

@ When —(—A)z is replaced by —(—A)S, s € (0, 1), existence,
unigueness and asymptotic estimates are proven in as series of
paper by Cabré, Sire, Dipierro, Figalli, Palatucci, Savin,
Valdinoci.
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Evolutive PN-model

Suppose that there are N straight edge dislocations lines all lying in
the same plane:

After a cross section:
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Evolutive PN-model

The dynamics for an ensemble of N straight dislocations lines with
the same Burgers’ vector and all contained in a single slip plane,
moving with self-interactions (no exterior forces) is described by the
evolutive version of the Peierls-Nabarro model:

O = —(—A)2u— W(u) inR* xR
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Evolutive PN-model

The dynamics for an ensemble of N straight dislocations lines with
the same Burgers’ vector and all contained in a single slip plane,
moving with self-interactions (no exterior forces) is described by the
evolutive version of the Peierls-Nabarro model:

O = —(—A)2u— W(u) inR* xR

with the following initial condition

u(O,x)—Z¢<x};"o),

i=1

where ¢ is the transition layer introduced before and
0<yl,—yl~1.
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Fractional Allen-Cahn equation

Consider the following rescaling

t x
)
v (t,X): U<52,5>

Then, v is solution of the fraction fractional Allen-Cahn type

equation:

50 V° = —(—A)2v — %W’(v) inRT xR

associated to the well-prepared initial condition:

v9(0,x) = qu( —y,)-
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Fractional Allen-Cahn equation

Gonzalez and Monneau proved that the solution v® converges, as
0 — 0 to the stable minima of W, i.e. integers. More precisely,

N

Vi(t,x) = Y H(x = yi(1)),

i=1

where H is the Heaviside function and the interface points y;(t),

i=1,...,Nevolve in time driven by the following system of ODE’s:
E Co 1 .
yi=— —— in (0, +00)
T iy )
¥i(0) = y?,

where ¢y = (fR(qS’)Z)q. System (2) corresponds to the classical
discrete dislocation dynamics (DDD).
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Fractional Allen-Cahn equation
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In our paper we consider the case N — +oo. Precisely,

that is ,
ou=—(—=A)zu— W'(u) inRxR",

N, yo
U(07X) _Z(b(x_ é) )
i=1

We want to identify at large (macroscopic) scale the evolution model
for the dynamics of a density of dislocations.
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We consider the following rescaling

. _ t x
uc(t,x) =eu <e62’65>’

then we see that u€ is solution of

SO = —(—A)Eu — %W’ (“) in (0, +00) x R

€

on=5 s (152

with initial datum
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More in general, we consider

{wtus-_(_m;ue_;w (%) nxe s
€

uc(0,-) = (") onR

where ¢, 5 > 0 are small scale parameters and § = §. — 0 as e — 0,

W e C>A(R) for some 0 < 3 < 1
W(u+1)=W(u) foranyueR
W=0 onz

W=>0 onR\ Z

W’ (0) > 0.

On the function uy we assume

{weanm

Up non-decreasing.
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Main result

Let uc be the viscosity solution of (3). Then, as e — 0, u¢ converges
locally uniformly in (0, +00) x R to the non-decreasing viscosity
solution of

O = —codyUu(—A)zu inRT xR
u(0,-) = w onR

where ¢y = (fR(¢’)2)71.

(4)
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Mechanical interpretation of the convergence result

The limit equation

du = —Codxu(—A)2u inR* xR
u(0,-) = u onR
represents the plastic flow rule for the macroscopic crystal plasticity
with density of dislocations.
@ u is the plastic strain
@ 0:u is the plastic strain velocity;
@ Oyu is the dislocation density;

@ —(—A)zuis the internal stress created by the density of
dislocations contained in a slip plane.

The theorem says that in this regime, the plastic strain velocity o;u is
proportional to the dislocation density uy times the effective stress
—(—A)zu. This physical law is known as Orowan’s equation.
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Equation

ou = —coaxu(—A)%u (5)
is an integrated form of a model studied by Head for the
self-dynamics of a dislocation density represented by uy

@ A. K. HEAD, Dislocation group dynamics IIl. Similarity solutions
of the continuum approximation, Phil. Magazine, 26, (1972),
65-72.
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Equation

ou = —coaxu(—A)%u (5)
is an integrated form of a model studied by Head for the
self-dynamics of a dislocation density represented by uy

@ A. K. HEAD, Dislocation group dynamics IIl. Similarity solutions
of the continuum approximation, Phil. Magazine, 26, (1972),
65-72.

Let f = uy, differentiating (5), we get
Otf = coOx(FH[f])
where H is Hilbert transform defined in Fourier variables by

F(H[V]) (€) = isgn(§) F(v)(E),

for v € S(R). The Hilbert transform has the representation formula
H[V](x) = PV/ V(y

and if u € C"*(R) and uy € LP(R) with 1 < p < +o0, then
—(=D)2u = Hu]. (6)
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The equation of motion of the dislocation continuum

Equation
i = cody(FHf]) (7)

is called by Head the equation of motion of the dislocation continuum
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The equation of motion of the dislocation continuum

Equation
et = cody(FHf]) (7)

is called by Head the equation of motion of the dislocation continuum

@ Existence of a smooth solution of (7) is proven by Castro and
Cordoba under the assumption that the initial datum is strictly
positive and in C*(R) N L3(R)

@ Carrillo, Ferreira and Precioso apply transportation methods and
show that the solution can be obtained as a gradient flow in the
space of probability measures with bounded second moment.
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More literature

@ ¢ = 1, homogenization problem studied by R. Monneau and S.P
in any dimension.
Limit equation d;u = H(Vu, —(—A)zu), where the effective
Hamiltonian H is defined through a cell problem.

@ Whenn=1, H(p,L) ~ c,|p|L.
@ § = 0, corresponds to the (DDD). The passage from the discrete
model (DDD) to continuum models has been studied by

Forcadel, Imbert and Monneau and more recently by van Meurs,
Peletier, Pozar.
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Heuristics. Approximation of —(—A)z

Let v € C"'(R). Assume for simplicity that v is strictly increasing. Let
e > 0 be a small parameter. Let us define the points x; as follows,

vix)=cei, i=M,...,N,

where M, := | fz "*ﬂ and N, = F“”R%J . By the monotonicity of v
the points x; are ordered,

X; < Xjrq foralli.

Then, we show that

NI S

T X — X’
j i

where the error goes to 0 when ¢ — 0.
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Heuristics. Approximation of —(—A)z

To show it, we consider a small radius r = r. —+ 0 as ¢ — 0 and we

split
€ € €
ZXI—Xii ZQ Xi—Xi0+ Z Xi—XiO.
r

7o 0 7io |X/'_Xfo |>r
X=Xy |
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Heuristics. Approximation of —(—A)z

To show it, we consider a small radius r = r. —+ 0 as ¢ — 0 and we

split
N R

— X; — Xj — XI
i#io 0 7o [Xi Xig [%r 0
[Xi—xig | <r

Then, we have
1

. ZQ € :% T V(Xiy1) — V(X))

Xj — X,'0 Xj — X,'0

[xi—xi 1 %7 X=X | >r
1 Z Ve (X)) (Xis1 — Xi)
T Xi — X,'O
X —xiq [>r

1 Vx (X
~ 7/ ) ax
™ J|x=x;, |>r X — Xy

1 v(x) — v(X;) 1 V(X + 1)+ v(x, —r) —2v(x;,)
R

o iy ™ r
(= A)2 [V](xp)-

We can control the error produced in the approximation by choosing
r not too small (r such thate/r — 0 as e — 0).
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Heuristics. Approximation of —(—A)z

On the other hand, for i # iy,
e(i — o) = v(xi) — v(xp) = vx(x;, ) (X — X;5)

from which

€ 1
Z X — X = Vx (%) Z (i— o)
i ! o i#i 0
X=X |<r li—iol <vx(Xjy) &

1 1
= VX(X/O) (%%((l’ - iO) " 1%1 (i - io)) (

e (EE),

k>1 k>1

=0.

We can control the error produced by choosing r sufficiently small
(r < e?).
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Heuristics. Any function is well-prepared

Let ¢ be the transition layer. If H(x) is the Heaviside function, then
S() ~ HOX) — ——, i x| >> 1,
amX
where a = W”(0). Then, if v € C"'(R) is non-decreasing
Ne
X) ~ Z o) <X
i=Me

where eM. ~ infg v. Indeed, assume x = Xx;, for some io. Then,

5 ) e

Ne io—1

Ze¢( ) M. = Z ( ) 6¢(0)+Ze¢( >+€M6
=M. € i=ig+1
ip—1 N,
6(5 56 €
= Tt — |+ — + M.
,§ ‘ am(X; — Xi0)> ™A X Xy ‘
= ﬂ Z + 6/0
1751 0
6 .
~ 2 ((-0)2W(x)) + o
~ EIO
= v(x;)
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Heuristics. Proof of convergence

@ Assume that the limit function u is smooth and oxu > 0.
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Heuristics. Proof of convergence

@ Assume that the limit function v is smooth and dxu > 0.
@ Then, we can define x;(t) as the unique solution of

u(t, xi(t)) = ei.
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Heuristics. Proof of convergence

@ Assume that the limit function v is smooth and dxu > 0.
@ Then, we can define x;(t) as the unique solution of

u(t, xi(t)) = ei.

@ Differentiate,
aru(t, xi(t)) + ocu(t, xi(t))xi(t) =0,
from which
du(t, xi(1))

X0 = =5t x(1)
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Heuristics. Proof of convergence

@ Assume that the limit function v is smooth and dxu > 0.
@ Then, we can define x;(t) as the unique solution of

u(t, xi(t)) = ei.

@ Differentiate,
aru(t, xi(t)) + ocu(t, xi(t))xi(t) =0,

from which
du(t, xi(1))

X0 = =5t x(1)

@ Next we consider as ansatz for u® the approximation of u given by

O(t, x) = i e (X%?(t)) + M.

i=M,
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Heuristics. Proof of convergence

@ Therefore,
1
Oru(t, xi(t)) = —codxu(t, xi(1))(—A)2 u(t, xi(t)).
Passing to the limit as ¢ — 0 we see that u solves

Oiu = —Codyu(—A)2 .

Stefania Patrizi



Heuristics. Proof of convergence

@ Therefore,
1
Oru(t, xi(t)) = —codxu(t, xi(1))(—A)2 u(t, xi(t)).
Passing to the limit as ¢ — 0 we see that u solves
1
Otu = —cpoxu(—A)2u.

@ Notice that if we define
Xi(eT)

yi(r) = ——

€
then the y;’s solve

. . Co € Co 1
y’(T):X’(ET)Z?Zx;—n:? Zyi—y/’

J#i J#i

which is the (DDD).
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Proof of convergence

In the formal proof we prove that:

@ The limit function is u is viscosity solution of the limit equation when
testing with test functions with derivative in x different than 0;

@ Forallt >0, limy__o u(t, x) = infg Up and limy_ o u(t, X) = supg Uo,
that is the mass of the non-negative function dxu(t, x) is conserved: for
allt >0,

1Oxu(t; )1 my = 1Oxtoll 1 (m)-

@ By a comparison argument, we conclude that u is the non-decreasing
viscosity solution of the limit equation.
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