Plamen D Stefanov
I consider myself an analyst, both pure and applied. I started mostly on the pure side but some of my most recent works are either applied or somewhere in between the two; and there is no clear distinctions between those two fields anyway. If I have to list areas formally, I would say that my mathematical interests include Partial Differential Equations, Applied Mathematics, and applications of Microlocal Analysis. Currently, I am working mostly on various Inverse Problems and on Integral Geometry but I am still interested in Scattering Theory and Resonances (scattering poles). My work is often motivated by problems coming from physics/geophsyics, engineering and medical imaging.
Microlocal Analysis is the study of functions, or more generally, distributions, in the phase space. We are interested not just in the local behavior near a fixed point (which is what classical analysis does); we want to understand the behavior near a point and a (co)direction. The main tools are the the theory of pseudodifferential operators and the Fourier Integral Operators (FIOs). Microlocal Analysis is a powerful technique for analyzing PDEs with variable coefficients and for geometric analysis on manifolds. Semiclassical (microlocal) analysis studies the behavior of systems when a small parameter tends to zero. It gets its name from its application to Quantum Mechanics, where we take the Plank constant to tend to zero.
Inverse Problems is an area that is both quite challenging and is of great applied interest (aren't they all?). Medical Imaging, Geophysics, nondestructive material testing rely heavily on Inverse Problems. A typical inverse problem is to recover the coefficients of a PDE from measurements on the boundary of the domain, or at infinity. Very often, those problems are highly nonlinear and ill posed. My interests here include:
 Inverse Boundary Value Problems, including elliptic and hyperbolic ones, inverse problems for the transport equation (optical tomography)
 Mathematics of medical imaging
 Inverse Scattering Problems
 Integral Geometry, especially integral transforms on nonEuclidean spaces including Riemannian and Lorentzian manifolds; and tensor tomography
 Questions of uniqueness, stability, recovery algorithms, numerical recovery
The boundary rigidity (lens rigidity) problem for compact Riemannian manifolds with boundary is to show that a manifold of a certain class is uniquely determined by its boundary distance function, respectively, by its scattering relation. It is an inverse problem but it is also of independent interest in geometry. One of the motivations comes from seismology: recover the inner structure of Earth from travel times of seismic waves. A recent work in this direction by me, G. Uhlmann and A. Vasy was featured in the News section of Nature: Longawaited mathematics proof could help scan Earth's innards. The linearization of this problem is the following integral geometry problem: determine a 2tensor (actually, determine only its solenoidal part) from its Xray transform: integrals along geodesics connecting boundary points. This is called sometimes Tensor Tomography. I am interested in:

Analyzing the linearized integral geometry problem, (s)injectivity, stability estimates, its properties as an FIO
 Uniqueness and stability for the nonlinear boundary rigidity/lens rigidity problem
 Partial data problems (with local information)
 Those two problems for manifolds with conjugate points
 Possible generalizations for nonRiemannian families of curves motivated by inverse problems for hyperbolic systems and relativity
 Other Integral Geometry problems
 Applications to elasticity and ultimately, to seismology
A new direction (for me) is discretizations of inverse problems and the related question of sampling. It turns out that there is a natural link between sampling and semiclassical (microlocal) analysis. In another recent work with Tindel, we study the effect of added noise to the data from semiclassical point of view.
I am interested in working with students who are excited by some of those areas. Prospective or current graduate students should feel free to contact me.