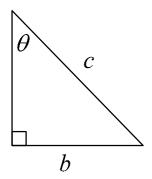

MA 15400 Fall 2014 Exam 1

PYTHAGOREAN IDENTITIES: $\sin^2 \theta + \cos^2 \theta = 1$

$$1 + \tan^2 \theta = \sec^2 \theta$$


$$1 + \cot^2 \theta = \csc^2 \theta$$

1. Find the angle that is complementary to 48°57'9"

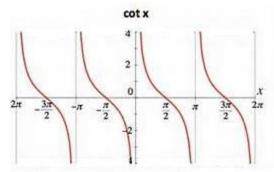
- A. 42°3'51"
- B. 131°2'51"
- C. 41°2'51"
- D. 132°3'51"
- E. None of the above
- 2. Express $\theta = 3.5$ in terms of degrees, minutes, and seconds, to the nearest second.
 - A. 200°32'7"
 - B. 151°15'22"
 - C. 200°53'52"
 - D. 151°42'33"
 - E. None of the above
- 3. Find the measure of the central angle θ , to nearest 0.1°, subtended by the arc of length s = 3.5 feet on a circle of radius r = 18 inches. (12 inches = 1 foot)
 - A. 115.9°
 - B. 127.8°
 - C. 151.5°
 - D. 133.7°
 - E. None of the above

4. Which **one** of the following statements is true for the given triangle?

- A. $\cot \theta = \frac{c}{b}$
- B. $\sec \theta = \frac{c}{\sqrt{c^2 b^2}}$
- C. $\tan \theta = \frac{\sqrt{c^2 b^2}}{b}$
- D. $\cos \theta = \frac{b}{\sqrt{c^2 b^2}}$
- E. $\csc \theta = \frac{b}{c}$
- 5. A forester, 180 feet from the base of a redwood tree, observes that the angle between the ground and the top of the tree is 62° . Find the height of the tree to the nearest whole foot.
 - A. 85 feet
 - B. 159 feet
 - C. 204 feet
 - D. 339 feet
 - E. None of the above
- 6. Which of the following is equivalent to $(\cot \theta + \csc \theta)(\tan \theta \sin \theta)$?
- A. $\sec \theta \cos \theta$
- B. $1+\tan^2\theta$
- C. $\csc\theta \sin\theta$
- D. $\csc\theta\sec\theta$
- E. $1+\cot^2\theta$

7. Find the exact value of $\sin \theta$ if θ is in standard position and the terminal side of θ is in quadrant *III* and parallel to the line 12x-5y=15

A.
$$\sin \theta = \frac{5}{13}$$


B.
$$\sin \theta = \frac{-12}{13}$$

C.
$$\sin \theta = \frac{-5}{13}$$

D.
$$\sin \theta = \frac{12}{13}$$

E. None of the above

8. Use the graph to complete the statement: As $x \to \frac{\pi}{2}$, $\cot(x) \to \underline{\hspace{1cm}}$

- A. $-\infty$
- B. 1
- C. 0
- D. ∞

E. None of the above

- 9. In March in Tucson, Arizona, the temperature in degrees Fahrenheit could be described by the equation $T(t) = -11\cos\left(\frac{\pi}{12}t\right) + 57$, where t is in hours and t = 0 corresponds to 6 A.M. What is the temperature at 3 P.M.? Angles are in radians and round to a whole number.
 - A. 49°
 - B. 57°
 - C. 68°
 - D. 54°
 - E. 65°

10. A point $P\left(\frac{3}{5}, \frac{-4}{5}\right)$ is the point of intersection between the terminal side of angle t and the

Unit circle. Find the exact value of $\cot(t)$

A.
$$\cot(t) = \frac{3}{5}$$

B.
$$\cot(t) = \frac{-4}{5}$$

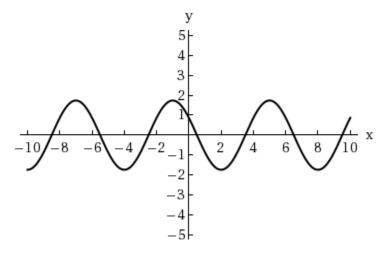
$$C. \cot(t) = \frac{4}{3}$$

D.
$$\cot(t) = \frac{-3}{4}$$

E. None of the above

11. Find the reference angle θ_R if $\theta = 300^\circ$

A.
$$\theta_R = 60^{\circ}$$


B.
$$\theta_R = 30^{\circ}$$

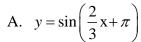
C.
$$\theta_R = 120^{\circ}$$

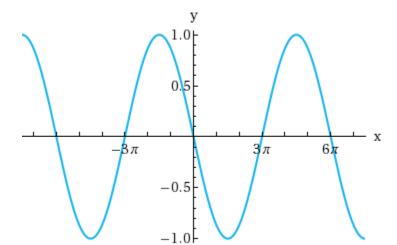
D.
$$\theta_R = 45^{\circ}$$

E. None of the above

12. Find the Period of the given graph.

A.
$$Period = 8$$


B.
$$Period = 6$$


C. Period =
$$4$$

D. Period =
$$2$$

E. Period =
$$\infty$$

13. Write the equation in the form $y = a \sin(bx + c)$ for a > 0, b > 0, and the least positive real number c.

- B. $y = \sin\left(\frac{1}{3}x + 2\pi\right)$
- $C. \quad y = \sin\left(\frac{2}{3}x + 2\pi\right)$
- $D. \quad y = \sin\left(\frac{1}{3}x + \pi\right)$
- E. $y = \sin(6x + 3\pi)$
- 14. Approximate, to the nearest 0.1° , all angles θ in the interval $[0^{\circ}, 360^{\circ})$ that satisfy equation $\sec \theta = 2.3456$.

A.
$$\theta = 64.8^{\circ}, 295.2^{\circ}$$

B.
$$\theta = 115.2^{\circ}, 244.8^{\circ}$$

C.
$$\theta = 64.8^{\circ}, 244.8^{\circ}$$

D.
$$\theta = 115.2^{\circ}, 295.2^{\circ}$$

15. Approximate, to the nearest 0.0001 radians, all angles θ in the interval $[0, 2\pi)$ that satisfy equation $\sin \theta = -0.8765$

A.
$$\theta = 1.0685, 5.2146$$

B.
$$\theta = 2.0730, 4.2101$$

C.
$$\theta = 4.2101, 5.2146$$

D.
$$\theta = 1.0685, 2.0730$$

MA 15400 Exam 1 Covers Lessons 1-1

1, Sections 6.1, 6.2, 6.3, 6.4, and 6.5		
Question	Answer	Letter
1.	41°2'51"	С
2.	200°32'7"	A
3.	133.7°	D
4.	$\sec \theta = \frac{c}{\sqrt{c^2 - b^2}}$	В
5.	339 feet	D
6.	$\sec \theta - \cos \theta$	A
7.	$\sin\theta = \frac{-12}{13}$	В
8.	0	С
9.	65°	Е
10.	$\cot\left(t\right) = \frac{-3}{4}$	D
11.	$\theta_{R} = 60^{\circ}$	A
12.	Period = 6	В
13.	$y = \sin\left(\frac{1}{3}x + \pi\right)$	D
14.	θ = 64.8°, 295.2°	A
15.	$\theta = 4.2101, 5.2146$	С

Fall 2014