MA 15400

Fall 2013

Exam 3

LAW OF SINES:

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

LAW OF COSINES:

$$c^{2} = a^{2} + b^{2} - 2ab\cos \gamma$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac\cos \beta$$

Double Angle Formulas:

$$\sin(2u) = 2\sin u \cos u$$
$$\cos(2u) = \cos^2 u - \sin^2 u$$

$$\cos(2u) = \cos^2 u - \sin^2 u$$

$$\tan(2u) = \frac{2\tan u}{1 - \tan^2 u}$$

Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Angle Between Two Vectors:

$$\cos\theta = \frac{(\vec{a}) \bullet (\vec{b})}{\|\vec{a}\| \|\vec{b}\|}$$

1. Find the exact value of the expression.

$$\tan^{-1}\left(\tan\left(\frac{4\pi}{3}\right)\right)$$

- A. $\frac{-\pi}{3}$
- B. $\frac{4\pi}{3}$
- C. $\frac{\pi}{3}$
- D. $\frac{5\pi}{3}$
- E. None of the above
- 2. Write the expression as an algebraic expression in x for x > 0.

$$\sin(2\cos^{-1}x)$$

- A. $2x 2x^2$
- B. $1-x^2$
- C. -1 + 2x
- D. $2x\sqrt{1-x^2}$
- E. None of the above
- 3. Use inverse trigonometric functions to find the solutions of the equation that are in the given interval, and approximate the solutions to four decimal places.

$$3\cos^2 x + 4\cos x - 5 = 0 \qquad [0, 2\pi)$$

- A. 2.4756, 3.8076
- B. 0.6660, 5.6172
- C. 0.9048, 2.2368
- D. 4.0464, 5.3784
- E. None of the above

This would be a good time to check the mode on your calculator!

- 4. Given \triangle ABC with $\alpha = 97^{\circ}$, $\gamma = 25^{\circ}$, and a = 21.5. Find the values of sides b and c rounded to one decimal place.
 - A. b = 18.4 and c = 9.2
 - B. b = 18.9 and c = 8.1
 - C. b = 18.9 and c = 9.2
 - D. b = 18.4 and c = 8.1
 - E. None of the above
- 5. A surveyor notes that the direction from point A to point B is N50°W and the direction from A to point C is S30°W. The distance from A to B is 275 yards, and the distance from B to C is 450 yards. Approximate the distance from A to C to the nearest whole yard.
 - A. 324 *yards*
 - B. 297 *yards*
 - C. 312 yards
 - D. 289 *yards*
 - E. None of the above
- 6. An airplane flies 333 miles from point A in the direction 50° and then travels in the direction 200° for 222 miles. To the nearest mile, approximately how far is the airplane from A?
 - A. 267 miles
 - B. 198 *miles*
 - C. 248 *miles*
 - D. 179 *miles*
 - E. None of the above

- 7. Given $\triangle ABC$ with $\alpha = 51^{\circ}$, a = 375 and c = 452, which statement is true?
 - A. There exist two possible triangles and one of the values of b = 153.2.
 - B. There only exists one possible triangle and $\beta = 59.5^{\circ}$
 - C. There exist two possible triangles and one of the values of $\gamma = 112.3^{\circ}$.
 - D. There only exists one possible triangle and b = 421.7
 - E. There is not enough information to solve for the rest of the triangle.

- 8. Given $a = \langle 4, 6 \rangle$ and $b = \langle -5, 2 \rangle$ find 3a 4b.
 - A. $\langle -31, -18 \rangle$
 - B. $\langle -8,36 \rangle$
 - C. $\langle 32,10 \rangle$
 - D. (8, -36)
 - E. None of the above
- 9. Given vector c = -8i + 4j find ||c|| to the nearest tenth.
 - A. ||c|| = 8.7
 - B. ||c|| = 8.1
 - C. ||c|| = 8.3
 - D. ||c|| = 8.5
 - E. None of the above

10. The magnitudes and directions of two forces acting at a point P are...

4.4*lb*, 50°

9.7*lb*, 165°

Approximate the direction of the result vector to the nearest whole degree.

A. $\theta = 129^{\circ}$

B. $\theta = 132^{\circ}$

C. $\theta = 134^{\circ}$

D. $\theta = 138^{\circ}$

E. None of the above

11. Find a vector that has the same direction as $\langle -6, 8 \rangle$ and five times its magnitude.

A. $\langle 30, -40 \rangle$

- B. $\langle 3, -4 \rangle$
- C. $\langle -30, 40 \rangle$
- D. $\langle -3,4 \rangle$
- E. None of the above
- 12. Find the angle between the two vectors $a = \langle -7, -6 \rangle$, $b = \langle -2, 10 \rangle$. Round to the nearest tenth of a degree.

A. 121.5°

- B. 119.3°
- C. 122.6°
- D. 113.9°
- E. None of the above

- 13. Determine m such that the two vectors $c = \langle 2m, -4 \rangle, d = \langle 5, 6 \rangle$ are orthogonal.
 - A. m = 3.75
 - B. m = -2.4
 - C. m = -3.75
 - D. m = 2.4
 - E. None of the above
- Questions 14 and 15. An airplane is flying in the direction 165° with airspeed of 450 mph, and a 50 mph wind is blowing directly **from** the west.

- 14. Approximate the Ground Speed of the airplane to the nearest mph.
 - A. 465 mph
 - B. 441*mph*
 - C. 447 mph
 - D. 471 mph
 - E. None of the above
- 15. Approximate the True Course of the airplane to the nearest whole degree.
 - A. 157°
 - B. 159°
 - C. 151°
 - D. 153°
 - E. None of the above

Exam 3 Answers

Exam 3

1.	C	$\frac{\pi}{3}$
2.	D	$2x\sqrt{1-x^2}$
3.	В	0.6660,5.6172
4.	A	b = 18.4 and $c = 9.2$
5.	С	312 yards
6.	D	179 miles
7.	A	There exist two possible triangles and one of the values of $b = 153.2$.
8.	C	⟨32,10⟩
9.	Е	c = 8.9
10.	D	θ = 138°
11.	С	⟨−30,40⟩
12.	В	119.3°
13.	D	m = 2.4
14.	A	465 mph
15.	В	159°