Test Number: 1150

MA 16010	Exam 1	Spring 2025
Student's Name:	Section Number:	

(Without your name and section number, we will NOT be able to locate your exam booklet.)

- 1. Fill out your name and section number in the space provided above. On the scantron, fill in your name, section number, test number and student ID. Sign your name.
- 2. You can write on this exam booklet. Turn in both your scantron and your exam booklet when you are done. Note: you will be graded ONLY based on your scantron answer sheet.
- 3. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 4. There are 12 questions with 8 points each for a total of 96 points. You will have 60 minutes to complete the exam. Good luck!

Instructor	Time	Section	Instructor	Time	Section
Ashton, Liam	9:30	103	Ashton, Liam	10:30	104
Delgado, Huimei	12:30	700	Delgado, Huimei	online	814
Delworth, Tim	7:30	811			
Devale, Tanmay	8:30	101	Devale, Tanmay	9:30	102
Manning, Amanda	2:30	109	Manning, Amanda	3:30	110
O'Connor, Sam	7:30	105	O'Connor, Sam	8:30	106
Robbins, Jakayla	9:30	813	Robbins, Jakayla	10:30	812
Wan, Hao	10:30	107	Wan, Hao	11:30	108

Find the following limit numerically.

 $\lim_{x
ightarrow 0}rac{e^x-1}{x}$

x	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1
f(x)									

- 1. (A) ₋₃
 - **B** -1
 - **C**₃
 - **D**₂
 - **E** _2
 - $(\mathbf{F})_1$

Which of the following functions has a hole at x = 5?

2. (A)
$$f(x) = \frac{x+5}{x^2-25}$$

(B) $f(x) = \frac{5}{x+5}$
(C) $f(x) = \frac{x^2-25}{x-5}$
(D) $f(x) = \frac{5}{x^2-25}$
(E) $f(x) = \frac{x-5}{x+5}$
(F) $f(x) = \frac{1}{x-5}$

Problem 3

Let

$$f(x) = egin{cases} 5x, & x < 1 \ 20 - x, & 1 \leq x < 3 \ 2x^2 - 1, & x \geq 3 \end{cases}$$

Which statement is true about the discontinuities of f(x)?

3. (A) f(x) is only discontinuous at x = 19.

B f(x) is only discontinuous at x = 3.

- \bigcirc f(x) is only discontinuous at x = 1.
- **b** f(x) is only discontinuous at x = 17.
- (E) f(x) is only discontinuous at x = 5.

(F) f(x) does not have any discontinuities.

Name:

Problem 4

The graph of f(x) is sketched below. Find $\lim_{x o -2} f(x)$ and $\lim_{x o 1} f(x)$.

4. A	$\lim_{x o -2} f(x)$ does not e	exist;	$\lim_{x\to 1}f(x)=0$
B	$\lim_{x\to -2}f(x)=-\infty;$	$\lim_{x o 1} f(x)$	=2
C	$\lim_{x\to -2}f(x)=+\infty;$	$\lim_{x o 1} f(x)$	= 0
D	$\lim_{x\to -2}f(x)=-\infty;$	$\lim_{x o 1} f(x)$	= 0
E	$\lim_{x ightarrow -2} f(x)$ does not e	exist;	$\lim_{x\to 1} f(x) = 2$
F	$\lim_{x\to -2}f(x)=+\infty;$	$\lim_{x o 1} f(x)$	=2

Find the derivative of $y = 6\sqrt{x} - \frac{3}{x^2} - 8\sqrt[4]{x^5}$. 5. (A) $\frac{6}{\sqrt{x}} + \frac{6}{x^3} - 10\sqrt[4]{x}$ (B) $\frac{3}{\sqrt{x}} - \frac{3}{2x} - 10\sqrt[4]{x}$ (C) $\frac{6}{\sqrt{x}} - \frac{3}{2x} - \frac{32}{5\sqrt[4]{x}}$ (D) $\frac{3}{\sqrt{x}} + \frac{6}{x^3} - 10\sqrt[4]{x}$ (E) $\frac{6}{\sqrt{x}} + \frac{6}{x^3} - \frac{32}{5\sqrt[4]{x}}$ (F) $\frac{3}{\sqrt{x}} + \frac{6}{x^3} - \frac{32}{5\sqrt[4]{x}}$

Problem 6

The position of a particle moving in a straight line is given by

$$s(t) = rac{7}{3}t^3 - 7t^2 - 56t + 10$$

where t is time in seconds and s(t) is in feet. At what time is the particle's velocity zero?

6. (A) t=1 second
(B) t=4 seconds
(C) t=6 seconds
(D) t=5 seconds
(E) t=3 seconds
(F) t=2 seconds

We want to find the derivative of $f(x) = \frac{1}{5x}$ using the limit definition. In which of the following is the limit definition set up correctly?

7. (A)

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{5(x+h)} + \frac{1}{5x}}{h}$$
(B)

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{5x+h} - \frac{1}{5x}}{h}$$
(C)

$$f'(x) = \lim_{x \to 0} \frac{\frac{1}{5(x+h)} + \frac{1}{5x}}{x}$$
(D)

$$f'(x) = \lim_{x \to 0} \frac{\frac{1}{5x+h} - \frac{1}{5x}}{x}$$
(E)

$$f'(x) = \lim_{x \to 0} \frac{\frac{1}{5(x+h)} - \frac{1}{5x}}{x}$$
(F)

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{5(x+h)} - \frac{1}{5x}}{h}$$

Problem 8

Find the equation of the tangent line to the graph of $y = 2x^3 - 3x$ at x = 2.

8. (A)
$$y = 21x - 52$$

(B) $y = 7x + 7$
(C) $y = 7x - 35$
(D) $y = 10x + 1$
(E) $y = 10x - 41$
(F) $y = 21x - 32$

Given $y = 4x \cos x$, find $y'(\frac{\pi}{4})$.

9. (A)
$$\frac{\sqrt{2}}{2} - 2\pi$$

(B) $2\sqrt{2} - \frac{\sqrt{2}\pi}{2}$
(C) $\frac{\sqrt{2}}{2} + 2\sqrt{2}\pi$
(D) $-2\sqrt{2}$
(E) -2
(F) $-2\sqrt{2} - 2$

Problem 10

Given $f(x) = rac{3e^x-1}{3e^x+1}.$ Find f'(0).

If $h(x) = an x - \cot x$,, then h'(x) =

11. (A) $\sec^2 x + \csc^2 x$ (B) $\sec x \tan x - \csc x \cot x$ (C) $\sec x \cot x + \csc x \tan x$ (D) $\sec x \cot x - \csc x \tan x$ (E) $\sec x \tan x + \csc x \cot x$ (F) $\sec^2 x - \csc^2 x$

Problem 12

Find g'(1).

$$g(x)=\left(rac{-x}{x^2-2}
ight)^3$$

12. **A** 12

- **B** 9
- **C**₆
- **D**₃
- **E** 27
- **(F)** 18