Test Number: 4400

MA 16010	Exam 2	Fall 2024	
Student's Name:	Section Number:		
(Without your name and section num	aber, we will NOT be able to locate	your exam booklet.)	

- 1. Fill out your name and section number in the space provided above. On the scantron, fill in your name, section number, test number and student ID. Sign your name.
- 2. You can write on this exam booklet. Turn in both your scantron and your exam booklet when you are done. Note: you will be graded ONLY based on your scantron answer sheet.
- 3. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 4. There are 12 questions with 8 points each for a total of 96 points. You will have 60 minutes to complete the exam. Good luck!

Instructor	Time	Section	Instructor	Time	Section
Anderson, Sarah	3:30pm	019	Anderson, Sarah	4:30pm	020
Bairnsfather, Chris	3:30pm	002	Bairnsfather, Chris	4:30pm	001
Baring, Geoffrey	9:30am	030	Baring, Geoffrey	10:30am	029
Barnes, Russell	2:30pm	023	Barnes, Russell	4:30pm	024
Batavia, Manav	3:30pm	035	Batavia, Manav	4:30pm	036
Carper, Patrick	11:30am	033	Carper, Patrick	12:30pm	034
Chen, Ying	7:30am	300	Chen, Ying	8:30am	400
Chlopecki, Anna	3:30pm	011	Chlopecki, Anna	4:30pm	012
Dasiuk, Jaden	12:30pm	017	Dasiuk, Jaden	1:30pm	018
Delgado, Huimei	online	999			
Fong, Justin	3:30pm	008	Fong, Justin	4:30pm	007
Gismondi, Nick	1:30pm	021	Gismondi, Nick	2:30pm	022
Gutwein, Linda	10:30am	027	Gutwein, Linda	11:30am	028
Hong, Kyungtak	1:30pm	015	Hong, Kyungtak	2:30pm	016
Hsu, Alexander	3:30pm	009	Hsu, Alexander	4:30pm	010
Kessinger, Ethan	8:30am	004	Kessinger, Ethan	9:30am	003
LaClair, Adam	12:30pm	013	LaClair, Adam	1:30pm	014
O'Connor, Sam	9:30am	032	O'Connor, Sam	10:30am	031
Ouseph, Chrisil	10:30am	005	Ouseph, Chrisil	11:30am	006
Polak, Raechel	12:30pm	500	Polak, Raechel	2:30pm	200
Styles, Nikos	3:30pm	025	Styles, Nikos	4:30pm	026

Find the derivative of $f(x) = e^{7x} \cos(10x)$.

- 1. (A) $-70e^{7x}\sin(10x) 70e^{7x}\cos(10x)$
 - **B** $10e^{7x}\cos(10x) 7e^{7x}\sin(10x)$
 - \bigcirc $7e^{7x}\cos(10x) 10e^{7x}\sin(10x)$
 - \bigcirc $70e^{7x}\cos(10x) 70e^{7x}\sin(10x)$
 - (E) $7e^{7x}\sin(10x) 10e^{7x}\cos(10x)$

Problem 2

The position of a particle moving in a straight line is given by

$$s(t) = t^4 - 2t^3 + 3t^2 - t + 4,$$

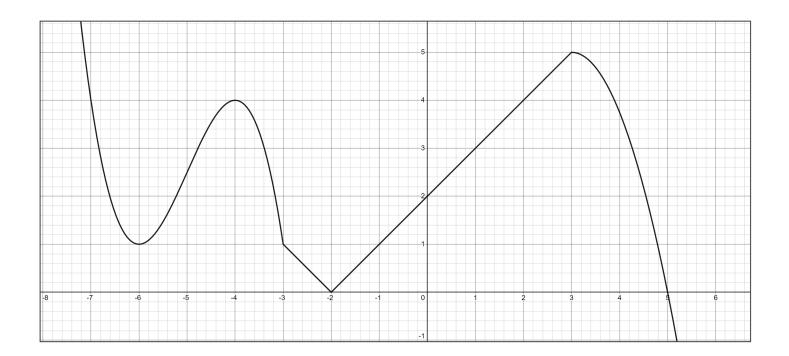
where t is time in hours and s(t) is in meters. What is the acceleration of the particle when t=2 hours?

- 2. (A) $_{24 \text{ m/hr}^2}$
 - \bigcirc 8 m/hr²
 - \bigcirc 42 m/hr²
 - $\begin{array}{|c|c|} \hline \textbf{D} & 30 \text{ m/hr}^2 \end{array}$
 - \bigcirc 19 m/hr²
 - \bigcirc 12 m/hr²

Find y'(1).

$$y = \ln \frac{x+3}{x^3 + x^2 + 2}$$

- 3. **(A)** $-\frac{1}{2}$
 - $leda_{-1}$
 - © $\frac{3}{2}$
 - \bigcirc 0


 - $-\frac{9}{4}$

Problem 4

All the edges of a cube are shrinking at a rate of 4 cm/sec. How fast is the volume shrinking when each edge is 7 cm?

- 4. (A) $_{285}\,\mathrm{cm^3/sec}$
 - **B** 588 cm³/sec
 - **C** 343 cm³/sec
 - \bigcirc 27 cm 3 /sec
 - \bigcirc 413 cm 3 /sec
 - \bigcirc 147 cm 3 /sec

Identify the relative/local maxima of the function shown in the graph below.

- 5. (A) (-6,1), (-4,4), (-3,1)
 - **B** (-4,4), (-3,1)
 - C (-6,1), (-4,4), (3,5)
 - \bigcirc (-4,4), (-3,1), (3,5)
 - (-4,4),(3,5)
 - (-3,1),(3,5)

The **derivative** of a function f(x) is $f'(x) = (x-4)^2(x+3)$. Find the largest open interval(s) on which f(x) is decreasing.

- 6. **(A)** $(-\infty, -3)$
 - \bigcirc B $(-3,\infty)$
 - **(** (−3,4)
 - \bigcirc $(-\infty,4)$
 - $lackbox{\textbf{E}}$ $(-\infty, -3)$ and $(4, \infty)$
 - $(\mathbf{F})_{(4,\infty)}$

Problem 7

Given $f(x) = x^3 - 3x$, find the relative extrema.

- 7. f A relative maximum: (1,0); relative minimum: none
 - f B relative maximum: (1,-2); relative minimum: none
 - \bigcirc relative maximum: (-1,2); relative minimum: (1,-2)
 - \bigcirc relative maximum: (1,-2); relative minimum: (-1,2)
 - $fence{E}$ relative maximum: none; relative minimum: (1,-2)
 - F relative maximum: none; relative minimum: (1,0)

Given $x^2+3xy+y^2=11$. Use implicit differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$ at (1,2).

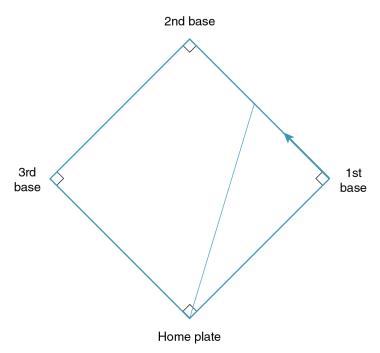
- 8. (A) $-\frac{8}{7}$
 - **B** 0
 - $\bigcirc \frac{2}{3}$
 - **D** $\frac{3}{7}$
 - **E** $-\frac{7}{2}$
 - $\frac{\mathbf{F}}{3}$ $-\frac{8}{3}$

Problem 9

Find the x values at which the inflection points of $f(x)=rac{1}{6}x^4+x^3-10x^2+11$ occur.

- 9. (A) x=0 and x=5
 - $left(\mathbf{B})$ x=-5 and x=-2
 - \bigcirc x=2 and x=3
 - $left(\mathbf{D}) \ x = -5 \ \mathsf{and} \ x = 2$
 - $egin{aligned} egin{aligned} \mathbf{E} & x=0 \ ext{and} \ x=2 \end{aligned}$
 - \bigcirc \mathbf{F} x=2 and x=5

Find the largest open interval on which the function $f(x)=5x^3-15x^2+20$ is both increasing and concave up.


- 10. (A) (1,2)
 - $leve{\mathbf{B}}_{(2,\infty)}$
 - \bigcirc $(-\infty,0)$
 - \bigcirc $(-\infty,1)$
 - \bigcirc $(1,\infty)$
 - $(\mathbf{F})_{(0,2)}$

Problem 11

Find the absolute extrema of $y = 4x^2 + 12x - 1$ on the closed interval [-2,0].

- 11. (A) Absolute minimum at $(-\frac{3}{2},-10)$, no absolute maximum.
 - $oxed{\mathbf{B}}$ Absolute minimum at (0,-1), absolute maximum at $(-\frac{3}{2},-10)$.
 - \bigcirc Absolute minimum at $(-\frac{3}{2},-10)$, absolute maximum at (0,-1).
 - $igode{\mathbf{D}}$ Absolute minimum at (0,-1), absolute maximum at $(-\frac{3}{2},-28)$.
 - $\stackrel{\textstyle \bullet}{\text{\ E}}$ Absolute minimum at $(-\frac{3}{2},-28)$, absolute maximum at (0,-1).
 - \bigcirc Absolute minimum at $(-\frac{3}{2}, -28)$, no absolute maximum.

A baseball diamond is a square with 90 ft on each side. A player runs from first base to second base at 11 ft/sec. At what rate is the player's distance from home base increasing when he is half way from first to second base?

- 12. (A) $\frac{11}{\sqrt{5}}$ ft/s
 - \bigcirc $11\sqrt{5}$ ft/s
 - $\bigcirc \frac{\sqrt{11}}{5} \text{ ft/s}$

 - \bigcirc 55 ft/s