Test Number: 1178

MA 16010	Exam 2	Spring 2025
Student's Name:	Section Number:	

(Without your name and section number, we will NOT be able to locate your exam booklet.)

- 1. Fill out your name and section number in the space provided above. On the scantron, fill in your name, section number, test number and student ID. Sign your name.
- 2. You can write on this exam booklet. Turn in both your scantron and your exam booklet when you are done. Note: you will be graded ONLY based on your scantron answer sheet.
- 3. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 4. There are 12 questions with 8 points each for a total of 96 points. You will have 60 minutes to complete the exam. Good luck!

Instructor	Time	Section	Instructor	Time	Section
Ashton, Liam	9:30	103	Ashton, Liam	10:30	104
Delgado, Huimei	12:30	700	Delgado, Huimei	online	814
Delworth, Tim	7:30	811			
Devale, Tanmay	8:30	101	Devale, Tanmay	9:30	102
Manning, Amanda	2:30	109	Manning, Amanda	3:30	110
O'Connor, Sam	7:30	105	O'Connor, Sam	8:30	106
Robbins, Jakayla	9:30	813	Robbins, Jakayla	10:30	812
Wan, Hao	10:30	107	Wan, Hao	11:30	108

Given $f(x) = rac{(2x-1)^3}{x^3-5}$, find f'(2).

1. (A) _9

B 24

C₆

- **D** -18
- **E** _27
- **(F)** _3

Problem 2

Given $f(x) = -8e^{4x}\ln(2x+1)$, find f'(0).

2. (A) $_{-40}$

- **B** -48
- **C** _16
- **D** -24
- \bigcirc -64
- **F** -8

Name:

Problem 3

Use implicit differentiation to find $\frac{\mathrm{d}y}{\mathrm{d}x}$ if

 $3x^2 + y^3 = 2x^2y$

Problem 4

The position of a particle moving in a straight line is given by

$$s(t) = t^4 + \frac{3}{2}t^2 - t - 5,$$

where t is time in hours and s(t) is in meters. What is the acceleration of the particle when t = 3 hours?

4. A 75 m/hr²
B 84 m/hr²
C 116 m/hr²
D 111 m/hr²
E 106 m/hr²
F 98 m/hr²

Name:

Problem 5

A spherical balloon is inflating at a rate of 3 cubic inches per second. How fast, in inches per second, is the radius of the balloon increasing when the radius is 10 inches? The volume V of a sphere is $V = \frac{4}{3}\pi r^3$.

Problem 6

A 10-foot ladder is leaning against a wall when it begins to slip. The base of the ladder slides away from the wall on flat ground at a rate of 3 feet/second. How fast, in feet/second, is the top of the ladder sliding down the wall when the top of the ladder is 8 feet above the ground?

Identify the relative/local maxima of the function shown in the graph below.

- **7.** (A) (-3,-1), (-1,2)
 - **B** (-3,-1), (3,5)
 - C (-3,-1), (-1,2), (3,5)
 - **D** (-4,-2), (-3,-1), (1,-1)
 - **E** (-1,2), (3,5)
 - $(\mathbf{F})_{(-4,-2),(1,-1)}$

Find the *x*-value at which $f(x) = 2x^3 + 15x^2$ has a relative maximum.

Problem 9

Given the **derivative**, $f'(x) = (x + 8)^2(x - 4)$, choose the correct statement regarding f(x).

- **B** f(x) is increasing on (-8,4).
- \bigcirc f(x) is increasing on $(-8,\infty)$.
- **b** f(x) is increasing on $(-\infty, -8)$ and $(4,\infty)$.
- (E) f(x) is increasing on $(-\infty, -8)$.
- (F) f(x) is increasing on $(4,\infty)$.

Consider the function, $f(x) = \frac{x^3}{3} + 3x^2 + 8x + 10$. Find the *x* value at which the inflection point occurs.

10. (A) x = -2

- **B** x = -4
- **C** x = 3
- **D** x = -3
- $\bigcirc x = 2$
- (F) x = 4

Problem 11

Choose the correct statement about the absolute minimum and the absolute maximum of $f(x) = x^4 - 4x$ on the interval of [0,2].

- **11.** (A) absolute minimum: (1,-3); absolute maximum: (0,0)
 - **B** absolute minimum: (1,-3); absolute maximum: (2,8)
 - \bigcirc absolute minimum: (0,0); absolute maximum: (1,-3)
 - **D** absolute minimum: (2,8); absolute maximum: (1,-3)
 - (\mathbf{E}) absolute minimum: (2,8); absolute maximum: (0,0)
 - (\mathbf{F}) absolute minimum: (0,0); absolute maximum: (2,8)

Consider the function

 $f(x) = rac{1}{3}x^3 - 7x^2 + 13x + 28.$

On which interval is the graph of f(x) both decreasing and concave down?

12. (A) (1,7)(B) $(7,\infty)$ (C) (1,13)(D) (7,13)(E) $(-\infty,13)$ (F) $(-\infty,7)$