# Test Number: 1010

| MA 16010        | Exam 3          | Fall 2024 |
|-----------------|-----------------|-----------|
| Student's Name: | Section Number: |           |

(Without your name and section number, we will NOT be able to locate your exam booklet.)

- 1. Fill out your name and section number in the space provided above. On the scantron, fill in **your name, section number, test number and student ID**. Sign your name.
- 2. You can write on this exam booklet. Turn in both your scantron and your exam booklet when you are done. Note: you will be graded ONLY based on your scantron answer sheet.
- 3. Only a one-line display scientific calculator is allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 4. There are 12 questions with 8 points each for a total of 96 points. You will have 60 minutes to complete the exam. Good luck!

| Instructor          | Time                | Section | Instructor          | Time               | Section |
|---------------------|---------------------|---------|---------------------|--------------------|---------|
| Anderson, Sarah     | $3:30 \mathrm{pm}$  | 019     | Anderson, Sarah     | 4:30pm             | 020     |
| Bairnsfather, Chris | 3:30pm              | 002     | Bairnsfather, Chris | 4:30pm             | 001     |
| Baring, Geoffrey    | 9:30am              | 030     | Baring, Geoffrey    | 10:30am            | 029     |
| Barnes, Russell     | 2:30pm              | 023     | Barnes, Russell     | 4:30pm             | 024     |
| Batavia, Manav      | 3:30pm              | 035     | Batavia, Manav      | 4:30pm             | 036     |
| Carper, Patrick     | 11:30am             | 033     | Carper, Patrick     | 12:30pm            | 034     |
| Chen, Ying          | 7:30am              | 300     | Chen, Ying          | 8:30am             | 400     |
| Chlopecki, Anna     | 3:30pm              | 011     | Chlopecki, Anna     | 4:30pm             | 012     |
| Dasiuk, Jaden       | $12:30 \mathrm{pm}$ | 017     | Dasiuk, Jaden       | 1:30pm             | 018     |
| Delgado, Huimei     | online              | 999     |                     |                    |         |
| Fong, Justin        | $3:30 \mathrm{pm}$  | 008     | Fong, Justin        | 4:30pm             | 007     |
| Gismondi, Nick      | 1:30pm              | 021     | Gismondi, Nick      | 2:30pm             | 022     |
| Gutwein, Linda      | $10:30 \mathrm{am}$ | 027     | Gutwein, Linda      | 11:30am            | 028     |
| Hong, Kyungtak      | $1:30 \mathrm{pm}$  | 015     | Hong, Kyungtak      | $2:30 \mathrm{pm}$ | 016     |
| Hsu, Alexander      | 3:30pm              | 009     | Hsu, Alexander      | 4:30pm             | 010     |
| Kessinger, Ethan    | 8:30am              | 004     | Kessinger, Ethan    | 9:30am             | 003     |
| LaClair, Adam       | 12:30pm             | 013     | LaClair, Adam       | 1:30pm             | 014     |
| O'Connor, Sam       | 9:30am              | 032     | O'Connor, Sam       | 10:30am            | 031     |
| Ouseph, Chrisil     | 10:30am             | 005     | Ouseph, Chrisil     | 11:30am            | 006     |
| Polak, Raechel      | 12:30pm             | 500     | Polak, Raechel      | 2:30pm             | 200     |
| Styles, Nikos       | 3:30pm              | 025     | Styles, Nikos       | 4:30pm             | 026     |

Which of the following limits equals to  $\infty$ ?



# **Problem 2**

Evaluate

$$\int (\cos x - \sin x + \csc^2 x) \, \mathrm{d}x$$

2. (A) 
$$-\sin x - \cos x + 2\csc x + C$$
  
(B)  $\sin x + \cos x - \csc x + C$   
(C)  $-\sin x - \cos x - 2\csc x \cot x + C$   
(D)  $-\sin x + \cos x + \cot x + C$   
(E)  $\sin x + \cos x - \cot x + C$   
(F)  $\sin x - \cos x + \cot x + C$ 

The graph of the **derivative**, f'(x), of a function f(x) is shown below.



Choose the correct statement(s) about f(x).

- I. f(x) is decreasing on  $(-\infty,3)$ .
- II. f(x) has a relative maximum at x = -3.
- III. f(x) is concave up on  $(-1,\infty)$ .
- IV. f(x) has two inflection points.
- 3. (A) I and II only
  - (B) I and III only
  - **(C)** I and IV only
  - $(\mathbf{D})$  II and IV only
  - (E) III and IV only
  - $(\mathbf{F})$  II and III only

Choose the number of true statements regarding the function  $f(x) = \frac{x^2 - 4}{x - 3}$ .

- I. The *y*-intercept is  $(0, \frac{4}{3})$ .
- II. The x-intercepts are (-2,0) and (2,0).
- III. f(x) has one vertical asymptote.
- IV. f(x) does not have any horizontal asymptote.
- V. f(x) has one slant asymptote.
- **4. (A)** Only three statements are true.
  - **B** No statement is true.
  - (C) Only one statement is true.
  - **(D)** Only four statements are true.
  - (E) All five statements are true.
  - (F) Only two statements are true.

# **Problem 5**

For rectangles that have a fixed perimeter of 36, what is the largest possible area?

- 5. **A** 96
  - **B** 81
  - C <sub>63</sub>
  - **D** 72
  - **E** 48
  - **(F)** 54

Evaluate

$$\int \frac{\sqrt{x} + 4x^4 + 2}{x} \, \mathrm{d}x$$

6. (A) 
$$\sqrt{x} + 16x^4 + 2\ln|x| + C$$
  
(B)  $2\sqrt{x} + 16x^4 + 2\ln|x| + C$   
(C)  $\sqrt{x} + 16x^4 - \frac{2}{x^2} + C$   
(D)  $2\sqrt{x} + x^4 + 2\ln|x| + C$   
(E)  $\sqrt{x} + x^4 - \frac{2}{x^2} + C$   
(F)  $2\sqrt{x} + x^4 - \frac{2}{x^2} + C$ 

# **Problem 7**

Use the left Riemann sum to approximate the area under  $f(x) = 2x^2 + 1$  from x = 0 to x = 6 with 3 rectangles.



- **B** 128
- **C** 86
- **D** 115
- **E** 64
- **(F)** 43

Given  $y'' = 4e^x - 3$ , y'(0) = 6 and y(0) = 5, find y(2).

8. (A)  $4e^2 - 1$ (B)  $4e^2 + 6$ (C)  $4e^2 - 6$ (D)  $4e^2 - 11$ (E)  $4e^2 + 1$ (F)  $4e^2 + 11$ 

#### **Problem 9**

Find the right Riemann sum that approximates the area under the curve of  $y = \ln(2x + 2)$  on the interval [0,4] with 8 rectangles. Give the answer in sigma notation.



A (closed) rectangular box with a square base will be built for \$48. The material for the top and bottom of the box costs \$2 per square foot, and the material for the sides of the box costs \$1 per square foot. What is the volume of the largest box that can be made?

10. (A)  $_{16}$  cubic feet

**B** 4 cubic feet

 $\bigcirc$  24 cubic feet

**D** 8 cubic feet

**E** 2 cubic feet

**(F)** 32 cubic feet

# **Problem 11**

The rate of growth of a population of bacteria,  $\frac{\mathrm{d}P}{\mathrm{d}t}$ , is given by

 $\frac{\mathrm{d}P}{\mathrm{d}t} = 8t,$ 

where P is the population size and t is the time in days. The initial size of the population is 1000. What is the population after 10 days?

11. **A** 1400

**B** 800

**C** 410

**D** 1080

**E** 2600

**F** 4000

A dish-ware company is designing cylindrical containers with a bottom but **no top**. The company wants to make the containers to have a capacity of 30 in<sup>3</sup>. To minimize the amount of material needed to make such containers, what should the radius of the base of the containers be? Round to three decimal places.

The surface area of a cylinder with **no top** is  $A = 2\pi rh + \pi r^2$  and the volume of a cylinder is  $V = \pi r^2 h$ .

12. (A)  $r \approx 1.712$  in (B)  $r \approx 2.122$  in (C)  $r \approx 5.112$  in (D)  $r \approx 6.021$  in (E)  $r \approx 4.135$  in (F)  $r \approx 3.187$  in