Name
(nine-digit) Student ID number
Division and Section Numbers
Recitation instructor

INSTRUCTIONS:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 16 problems, each worth 6 points. You get 2 points for coming and 2 if you fully comply with instruction 1. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1. The domain of the function $f(x) = \sqrt{|x+2|-3}$ is
 - A. $(-\infty, -1] \cup [5, \infty)$
 - B. [-1, 5]
 - C. [-5, 1]
 - D. $[5,\infty)$
 - E. $(-\infty, -5] \cup [1, \infty)$

- 2. Let l_1 and l_2 be two parallel lines. If l_1 contains the points (1,2) and (3,6) and if l_2 contains (-1,1) find the equation for l_2 .
 - A. y = 2x + 3
 - B. y = 2x 1
 - C. y = 2x + 1
 - D. y = 2x + 2
 - E. None of the above.

- 3. If $\sin \theta = \frac{1}{2}$ and $\frac{\pi}{2} \le \theta \le \pi$ then $\sec \theta =$
 - A. 2
 - B. -2
 - C. $\frac{\sqrt{3}}{2}$
 - D. $\frac{-2}{\sqrt{3}}$
 - E. $\frac{2}{\sqrt{3}}$

- 4. If $f(x) = \begin{cases} 2x+1 & \text{if } x < 1 \\ 3-x & \text{if } x \ge 1 \end{cases}$ and $g(x) = x^2$ then $(f \circ g)(2)$ equals
 - A. 9
 - B. -1
 - C. 1
 - D. -9
 - E. 25

- 5. If $\frac{e^{x^2}e^6}{e^{5x}} = 1$ then x =
 - A. -3 or -2
 - B. -2 or 3
 - C. 2 or 3
 - D. 2 or -3
 - E. None of the above.

- 6. The limit $\lim_{x\to 4} \frac{x^2-3x-4}{x-4}$ equals
 - A. 1
 - B. -1
 - C. 5
 - D. -5
 - E. does not exist

- 7. If $f(x) = ln(e^{3x} + 1)$ then $f^{-1}(x)$ equals
 - A. $\frac{1}{3}ln(e^x + 1)$
 - B. $ln(\frac{(e^x-1)}{3})$
 - C. $3ln(e^x 1)$
 - D. $ln(3(e^x + 1))$
 - E. $\frac{1}{3} ln(e^x 1)$

- 8. The limit $\lim_{x\to 0} (\frac{1}{x(1+x)} \frac{1}{x})$ equals
 - A. 2
 - B. 1
 - C. 0
 - D. -1
 - E. does not exist

Problems 9 - 11 refer to the graphs below:

- 9. $\lim_{x \to 1} f(x) \cdot g(x)$ equals
 - A. 0
 - B. -1
 - C. 1
 - D. $\frac{1}{2}$
 - E. does not exist
- 10. $\lim_{x\to 1^-} (x+2f(x))$ equals
 - A. 3
 - B. 2
 - C. 1
 - D. 4
 - E. does not exist
- 11. $\lim_{x \to 1^+} \frac{f(x)}{g(x)}$ equals
 - A. ∞
 - B. 0
 - C. $-\infty$
 - D. -1
 - E. does not exist

- 12. The graph of $h(x) = x^2$ is first compressed vertically by a factor of 2, then shifted to the right by 3 units, and then reflected about the y-axis. The final equation is
 - A. $2(x+3)^2$
 - B. $\frac{1}{2}(x-3)^2$
 - C. $2(x-3)^2$
 - D. $\frac{1}{2}(x+3)^2$
 - E. None of the above.

- 13. A bacteria population triples each $\frac{1}{2}$ hour. If the initial population is 200, then the population P(t) after t hours is
 - A. $P(t) = 200 \cdot 3^t$
 - B. $P(t) = 200 \cdot 3^{2t}$
 - C. $P(t) = 200 \cdot 3^{\frac{t}{2}}$
 - D. $P(t) = 200 \cdot (\frac{3}{2})^t$
 - E. $P(t) = 200 \cdot 6^t$.

14. Let
$$f(x) = x^2$$
, $g(x) = \frac{1}{x}$, $h(x) = \frac{1}{x^2}$, $k(x) = x^3$. Then

- A. f and g are one to one.
- B. g and h are one to one.
- C. f and h are one to one.
- D. h and k are one to one.
- E. g and k are one to one.

15. The domain of
$$f(x) = \frac{1}{\sqrt{2+x-x^2}}$$
 is

- A. (-1,2)
- B. (-2, -1)
- C. (-2,1)
- D. (1,2)
- E. (-2,2)

16. If
$$f(x) = \begin{cases} 1+x & \text{if } x < 0 \\ 2x+1 & \text{if } 0 \le x < 1 \text{ which of the following statements is true?} \\ 2x & \text{if } 1 \le x \end{cases}$$

A.
$$\lim_{x\to 0} f(x) = 1$$
 and $\lim_{x\to 1} f(x) = 3$

B.
$$\lim_{x\to 0} f(x) = 1 \text{ and } \lim_{x\to 1} f(x) = 2$$

C.
$$\lim_{x\to 0} f(x)$$
 does not exist and $\lim_{x\to 1} f(x) = 3$

D.
$$\lim_{x\to 0} f(x) = 1$$
 and $\lim_{x\to 1} f(x)$ does not exist

E. None of the above.