Name:	
10-digit PUID:	
Lecturer:	
Recitation Instructor:	
Recitation Time:	

Instructions:

- 1. This package contains 14 problems worth 7 points each.
- 2. Please supply <u>all</u> information requested above. On the scantron sheet print your name, your division–section number and 10–digit PUID and fill in the corresponding circles. Use a pencil on the scantron sheet. You get 2 points for supplying all information correctly.
- 3. Work only in the space provided, or on the backside of the pages. Circle your choice for each problem in this booklet, and mark your answer on the scantron sheet.
- 4. No books, notes, calculator or any electronic devices may be used on this exam.

Answers:

1. The solution of the inequality $x^2 - x < 2$ is

- A. (-1,2)
- B. $(-\infty, -1) \cup (2, \infty)$
- C. $(-\infty, 2)$
- D. $(-1,\infty)$
- E. $(-\infty, \infty)$

2. Line L_1 contains (1,4) and (2,-1); line L_2 is perpendicular to L_1 and passes through (-1,3). An equation of L_2 is

A.
$$x + y - 2 = 0$$

B.
$$x + 5y - 14 = 0$$

C.
$$2x - y + 5 = 0$$

D.
$$5x + y + 2 = 0$$

E.
$$x - 5y + 16 = 0$$

- 3. Find the center C and radius R of the circle $x^2 + y^2 + 2x 2y 4 = 0$.
 - A. C(1,1), R=6
 - B. C(-1,1), R=6
 - C. $C(-1,1), R = \sqrt{6}$
 - D. $C(1,-1), R = \sqrt{6}$
 - E. $C(1,1), R = \sqrt{6}$

4. If $\cos \theta = 3/5$ and $3\pi/2 \le \theta \le 2\pi$, then $\tan \theta =$

- A. 4/5
- B. -4/3
- C. 4/3
- D. -3/4
- E. 3/4

- 5. The domain of the function $f(x) = \sqrt{|x-1|-2}$ is
- A. $(-\infty, 3]$
- B. $[2,\infty)$
- C. $(-\infty, -1] \cup [3, \infty)$
- D. [-1,3]
- E. $(-\infty, -2] \cup [2, \infty)$

- 6. The graph of function g is given below. $(g \circ g)(-1) =$
- A. -2
- B. -1
- C. 0
- D. 2
- E. 3

7. The graph of g is obtained from the graph of f by first compressing horizontally by a factor of 2, then reflecting about the g axis, and finally shifting to the left by 3 units. In other words, g(x) =

A.
$$f\left(\frac{-(x+3)}{2}\right)$$

B.
$$f\left(\frac{-x}{2}+3\right)$$

C.
$$-2f(x+3)$$

D.
$$f(-2x+3)$$

E.
$$f(-2(x+3))$$

8. Which two functions could be graphed below?

A.
$$y = 1/2^x$$
, $y = 2^x$

B.
$$y = 1/3^x$$
, $y = 2^x$

C.
$$y = 3^x$$
, $y = 1/2^x$

D.
$$y = -3^x$$
, $y = 2^x$

E.
$$y = 3^x$$
, $y = -2^{-x}$

- 9. Which of the functions f(x) = |x+1|, g(x) = 2x + 1 is one-to-one?
 - A. Both are
 - B. Only f
 - C. Only g
 - D. Neither
 - E. None of the above answers is correct.

10. $5\log_{10} 2 + \log_8 1 - \log_{10} 4 =$

- A. $\log_{10} 8$
- $B.\ \log_{10}6$
- $C.~\log_{80}48$
- D. $\log_{80} 29$
- $\mathrm{E.}\ \log_{18} 29$

- 11. Which is true: if a>0 then I. $a^ba^c=a^{b+c};$ II. $a^b+a^c=a^{bc}$
 - A. Both are
 - B. Only I
 - C. Only II
 - D. Neither
 - E. None of the above answers is correct.

12. Solve the equation $e^{3x-2} - 1 = 0$.

A.
$$x = \ln \sqrt{3}$$

B.
$$x = 1 + \ln(3/2)$$

C.
$$x = 1$$

D.
$$x = 2/3$$

E.
$$x = 3/5$$

13. Given the graph of y = g(x), which is true?

I.
$$\lim_{x \to 1} g(x) = 0$$

$$II. \lim_{x \to 1^-} g(x) = 1$$

III.
$$\lim_{x \to 1^+} g(x) = 0$$

- A. Only I
- B. Only II
- C. Only I and III
- D. Only II and III
- E. All are true.

14. $\lim_{x \to -1} \frac{t+1}{t^2 - 2t - 3} =$

A.
$$-1/4$$

B.
$$-1/2$$

D.
$$1/2$$