MA 161 & 161E Midterm Exam 2, October 2003

Name	 		
Student ID number	 		
Lecturer		<u> </u>	-
Recitation instructor			

INSTRUCTIONS:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 12 problems, each worth 8 points. You get 2 points for coming and 2 if you fully comply with instruction 1. The maximum score is 100 points.
- 3. For each problem circle the answer of your choice, and also mark it on the scantron sheet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

Formulas (which you may or may not use)

$$\cos 2x = \cos^2 x - \sin^2 x,$$
 $\sin 2x = 2 \sin x \cos x,$ $\cosh x = \frac{e^x + e^{-x}}{2},$ $\sinh x = \frac{e^x - e^{-x}}{2}.$

DACE BEED BAED

$$1. \ \frac{d}{du} \left(\frac{\sqrt[3]{u}}{\sqrt{u}} \right) =$$

- A. $3\sqrt{u}$
- B. $-\frac{1}{3\sqrt[6]{u^7}}$
- C. $\frac{3}{2\sqrt[6]{u}}$
- D. $-\frac{1}{6\sqrt[6]{u^7}}$
- E. $\frac{2}{3\sqrt[6]{u}}$

- 2. If the line tangent to the curve $y = x^2 + 3x + 1$ at (a, b) passes through the point (1, 4), then the possible values of a are
 - A. 0 and 2
 - B. $\frac{1}{4}$ and 2
 - C. $\frac{3}{4}$ and 1
 - D. 0 and 1
 - E. $\frac{1}{4}$ and $\frac{3}{4}$

- 3. If h(x) = f(x)g(x), f(0) = 1, f'(0) = 3, g(0) = 1, and h'(0) = 5, then g'(0) = 6
 - A. 0
 - B. 1
 - C. 2
 - D. -1
 - E. -2

- 4. The electric resistance of a wire is $R = \frac{\rho l}{A}$, where ρ is the specific resistance of the material of the wire, l is the length of the wire and A the area of a cross-section. If specific resistance and cross-sectional area are fixed, the rate of change of R with respect to length is
 - A. $\frac{l}{A}$
 - B. ρl
 - C. $-\frac{\rho l}{A^2}$
 - $D. -\frac{2\rho l}{A^2}$
 - E. $\frac{\rho}{A}$

 $5. \lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$

$$A. = 1$$

B.
$$=\frac{2}{5}$$

C.
$$=\frac{1}{3}$$

D.
$$=\frac{1}{6}$$

E. does not exist

6. If the graph of f is sketched on the right, which is the graph of f'?

D.

A.

7. If
$$y = \sqrt[3]{\frac{t^3 + 1}{t^3 - 1}}$$
, then $\frac{dy}{dt} =$

A.
$$\frac{2t^5}{\sqrt[3]{(t^3-1)^4(t^3+1)^2}}$$

B.
$$-\frac{2t^2}{\sqrt[3]{(t^3-1)^2(t^3+1)^4}}$$

C.
$$\frac{6t^2}{\sqrt[3]{(t^3-1)^4(t^3+1)^2}}$$

D.
$$-\frac{6t^2(t^3+1)}{\sqrt[3]{(t^3-1)^2}}$$

E.
$$-\frac{2t^2}{\sqrt[3]{(t^3-1)^4(t^3+1)^2}}$$

8. An equation of the line tangent to the graph of $x \cos y + y \cos x = 1$ at the point (0,1)

A.
$$(\cos 1) x + y = 1$$

B.
$$x + y = 1$$

C.
$$-(\sin 1) x + y = 1$$

D.
$$x - y = 1$$

E.
$$(\tan 1) x + y = 1$$

9. Evaluate $\lim_{s \to \frac{\pi}{3}} \frac{\tan s - \sqrt{3}}{s - \frac{\pi}{3}}$.

- A. 2
- B. 4
- C. $\frac{1}{2}$
- D. $\frac{1}{4}$
- E. $\sqrt{3}$

10. If $f(x) = \cosh 2x$, then f''(x) =

- A. $4\cosh 2x$
- B. $-2\cosh 2x$
- C. $-4 \sinh 2x$
- D. $2 \sinh 2x$
- E. $2 \sinh 4x$

11. If $f(x) = \sqrt{x} e^{x^2} (x^2 - 7)^9$, then f'(x) =

A.
$$\sqrt{x}e^{x^2}(x^2-7)^9\left[-\frac{1}{2x}+2x+\frac{2x}{9(x^2-7)}\right]$$

B.
$$\sqrt{x}e^{x^2}(x^2-7)^9\left[\frac{1}{2x}+2x+\frac{2x}{9(x^2-7)^8}\right]$$

C.
$$\sqrt{x}e^{x^2}(x^2-7)^9\left[\frac{1}{2x}+1+\frac{18x}{x^2-7}\right]$$

D.
$$\sqrt{x}e^{x^2}(x^2-7)^9\left[-\frac{1}{2x}+2x+\frac{18x}{(x^2-7)^8}\right]$$

E.
$$\sqrt{x}e^{x^2}(x^2-7)^9\left[\frac{1}{2x}+2x+\frac{18x}{x^2-7}\right]$$

12. A mini-baseball diamond is a square ABCD with side 9 meters. A batter hits the ball at A and runs toward first base B with a speed of 2 m/s. At what rate is his distance from third base D increasing when he is two-thirds of the way to first base?

A.
$$\frac{3}{\sqrt{13}}$$
 m/s

D.
$$\frac{4}{\sqrt{13}}$$
 m/s

E.
$$\frac{24}{\sqrt{13}}$$
 m/s