MA 161 EXAM II Fall 2005

Name
ten-digit Student ID number
Division and Section Numbers
Recitation Instructor

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 14 problems, each worth 7 points.

You get 2 points if you fully comply with instruction 1.

The maximum score is 100 points.

- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1. If $f(x) = \frac{x^2 2\sqrt{x}}{x}$ then f'(4) =
 - a. $\frac{9}{8}$
 - b. $\frac{5}{4}$ c. $\frac{7}{8}$

 - d. $\frac{-5}{8}$
 - e. $\frac{-3}{4}$

- 2. If $g(x) = \frac{ax+b}{cx+d}$ then g'(1) =
 - a. $\frac{a+b-c-d}{c+d}$
 - b. $\frac{ad bc}{(c+d)^2}$
 - c. $\frac{a+b-c-d}{(c+d)^2}$
 - d. $\frac{ad + bc}{c + d}$
 - e. $\frac{ad + bc}{(c+d)^2}$

3. A box with no top has width twice its height and length four times its height.

The material for the sides costs $6/in^2$ and for the base $4/in^2$.

If its height is s in. find the rate of change of the cost of the box with respect to s in f.

- a. $52s \frac{\$}{in}$
- b. $62s \frac{\$}{in}$
- c. $104s \frac{\$}{in}$
- d. $208s \frac{\$}{in}$
- e. $86s \frac{\$}{in}$

- 4. If $f(x) = \sec x + \tan x$ then f'(x) =
 - a. $\sin x + \cos x$
 - b. $\frac{\cos x + 1}{\sin^2 x}$
 - c. $\tan^2 x \sec x$
 - d. $\tan x \sec x$
 - e. $\frac{\sin x + 1}{\cos^2 x}$

- 5. If $f(x) = (1 + \cos^2 x)^6$ then $f'\left(\frac{\pi}{4}\right) =$
 - a. $-\left(\frac{3}{2}\right)^6$
 - b. $-2\left(\frac{3}{2}\right)^5$
 - c. $-4\left(\frac{3}{2}\right)^6$
 - d. $4\left(\frac{3}{2}\right)^6$
 - e. $-4\left(\frac{3}{2}\right)^5$

- 6. $D^{125}xe^{-x} =$
 - a. $-(x-124)e^{-x}$
 - b. $-(x-125)e^{-x}$
 - c. $(x 125)e^{-x}$
 - d. $(x 124)e^{-x}$
 - e. none of the above

7. Find the tangent line to $y = \arcsin(x)$ at $x = \frac{\sqrt{3}}{2}$.

a.
$$y = \frac{\pi}{6} + x - 2$$

b.
$$y = \frac{\pi}{6} + \frac{2\sqrt{3}}{3} x - 2$$

c.
$$y = \frac{\pi}{3} + 2x - \sqrt{3}$$

d.
$$y = \frac{\pi}{6} + 2x - \sqrt{3}$$

e.
$$y = \frac{\pi}{3} + \frac{2\sqrt{3}}{3} x - 2$$

8. If $g(u) = \frac{e^{2u}}{e^u + e^{-u}}$ then g'(u) =

a.
$$\frac{2e^{2u}}{e^{2u} + 2 + e^{-2u}}$$

b.
$$\frac{2e^{2u}}{e^u + e^{-u} + 1}$$

c.
$$\frac{e^{3u} + 3e^u}{e^{2u} + 2 + e^{-2u}}$$

d.
$$\frac{e^{2u} + e^{-2u}}{e^{2u} + 2 + e^{-2u}}$$

e. none of the above

9.
$$\frac{d}{dx}(x^{\cos x}) =$$

- a. $x^{1+\cos x}(\cos x \sin x \ln x)$
- b. $(-\sin x)x^{\cos x}$
- c. $(\cos x)x^{(\cos x-1)}$
- d. $x^{(\cos x 1)}(\cos x x\sin x \ln x)$
- e. $x^{\cos x} \ln \cos x$

- 10. Given $x^y = y^x$, then $\frac{dy}{dx} =$
 - a. $\frac{1 \ln x}{1 \ln y}$
 - b. $x^{y-x} \ln x$
 - c. $(1 \ln x) \frac{y}{x}$
 - d. $(1 \ln y) \frac{y}{x}$
 - e. $\left(\frac{y}{x}\right)^2 \frac{1 \ln x}{1 \ln y}$

- 11. Given $f(x) = \frac{\ln x}{x^2}$, then f''(x) =
 - a. $-\frac{1}{2x^2}$
 - b. $\frac{6 \ln x}{x^4}$
 - $c. \frac{1 6 \ln x}{x^4}$
 - $d. \ \frac{1 2\ln x}{x^3}$
 - e. none of the above

12. A particle moves along the curve $y = \sqrt[3]{11 + x^4}$.

As it reaches the point (2,3), the y-coordinate is increasing at a rate of $32 \frac{cm}{s}$.

Then, the x-coordinate at that instant is increasing at a rate of

- a. $27 \frac{cm}{s}$
- b. $9 \frac{cm}{s}$
- c. $13.5 \frac{cm}{s}$
- d. $6.75 \frac{cm}{s}$
- e. None of the above

- 13. The minute hand on a watch is 9 cm long and the hour hand is 4 cm long. How fast, in $\frac{cm}{h}$, is the distance between the tips of the hands increasing at ten o'clock?
 - a. $\frac{1 8\sqrt{3}}{11\sqrt{61}\pi}$
 - b. $\frac{33\sqrt{3}\pi}{\sqrt{61}}$
 - c. $\sqrt{61}$
 - d. $\frac{11\sqrt{61}\pi}{6}$
 - e. $\frac{6\sqrt{61}}{11\pi}$

14. The edge of a cube was found to be 20 cm with a possible error in measurement of $0.1~\mathrm{cm}$.

Using differentials, the percentage error in the surface area of the cube is

- a. 1%
- b. 2%
- c.~0.5%
- d.~5%
- e. 2.5%