Name
ten-digit Student ID number
Division and Section Numbers
Recitation Instructor

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 14 problems, each worth 7 points. You get 2 points if you fully comply with instruction 1. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

Key

cche achc dhee ch

- 1. Find two positive numbers x and y satisfying x + 2y = 80 whose product is maximum.
 - a. $\{32, 24\}$
 - b. {28, 26}
 - c. {40, 20}
 - d. {26,27}
 - e. none of the above
- 2. A box with a square base has volume $100in^3$ and dimensions $b \times b \times h$. A formula for its surface area in terms of b is A(b) =
 - a. $2b^2 + \frac{400}{b^2}$
 - b. $2b^2 + \frac{200}{b^2}$
 - c. $2b^2 + \frac{400}{b}$
 - d. $2b^2 + \frac{200}{b}$
 - e. none of these
- 3. Let $f(x) = x^2 2$ and $x_1 = 3$. Find x_2 , the second approximation to $\sqrt{2}$ using Newton's method.
 - a. $2\frac{1}{2}$
 - b. $1\frac{5}{6}$
 - c. $2\frac{1}{7}$
 - d. $1\frac{5}{7}$
 - e. $2\frac{5}{6}$

- 4. Find f(x) if $f'(x) = 3x^2 + \frac{2}{x}$, x > 0, f(1) = 3.
 - a. $x^3 + 2 \ln x$
 - b. $x^3 \frac{1}{x} + 3$
 - c. $x^3 + 2 \ln x + 1$
 - d. $6x + 2 \ln x 3$
 - e. $x^3 + 2 \ln x + 2$
- 5. Given $\int_{1}^{4} \sqrt{x} \, dx = \frac{14}{3}$ evaluate $\int_{1}^{4} (2 + 3\sqrt{x}) dx$.
 - a. 20
 - b. $\frac{18}{3}$
 - c. 14
 - d. $\frac{26}{3}$
 - e. 28
- 6. From the graph below evaluate $\int_0^4 f(x)dx$

- a. -4
- b. -2
- c. -1
- d. 0
- e. 2

- 7. The most general antiderivative to $f(x) = \sin 2x + 2x$ is F(x) =
 - $a. -2\cos 2x + x^2 + C$
 - b. $-\frac{\cos 2x}{2} + x^2 + C$
 - c. $2\cos 2x + \frac{x^2}{2} + C$
 - d. $\frac{\cos 2x}{2} + x^2 + C$
 - e. $2\cos 2x + x^2 + C$
- 8. The absolute maximum of $f(x) = \frac{x^2 4}{x^2 + 2}$ on the interval [-2, 2] is
 - a. -4
 - b. 4
 - c. 0
 - d. 2
 - e. -2
- $9. \lim_{x \to 1} \frac{\ln x}{\sin \pi x} =$
 - a. 0
 - b. −1
 - c. π
 - d. $\frac{-1}{\pi}$
 - e. none of the above

- 10. $\lim_{x \to 0^+} (\sin 3x)^x$
 - a. 3
 - b. 1
 - c. ∞
 - d. 0
 - e. -3

11.

Given the graph of the derivative function, f' above, we may conclude that

- a. f(c) < 0
- b. f has a local maximum at c
- c. f is not differentiable at c
- d. f is increasing to the left of c
- e. f has an inflection point at c
- 12. The number of points at which $f(x) = x^4 8x^2 7$ has either a local maximum value, a local minimum value, or an inflection point is
 - a. 1
 - b. 2
 - c. 3
 - d. 4
 - e. 5

13. The graph of $f(x) = x^2 \ln x$ resembles most

a.

b.

c.

d.

, e

- 14. Given that f(1) = 9 and $f'(x) \ge 3$ for $1 \le x \le 4$, the smallest f(4) can be is
 - a. 19
 - b. 18
 - c. 12
 - d. cannot be determined
 - e. none of the above