- (1) The domain of the function  $f(x) = \sqrt{\ln(x+5)}$  is:
  - (a)  $[0, \infty)$
  - (b)  $[-5,\infty)$
  - (c)  $[5, \infty)$
  - (d)  $[-4,\infty)$
  - (e)  $[4, \infty)$

- (2) Let  $f(x) = \sqrt[3]{2-x}$ . Which of the following is  $f^{-1}(x)$ ?
  - (a)  $(2-x)^3$
  - (b)  $(x-2)^3$
  - (c)  $2 + x^3$
  - (d)  $x^3 2$
  - (e)  $2-x^3$

- (3) If  $f(x) = \begin{cases} x^2 + 9 & \text{for } x \leq 1 \\ 12x ax^2 & \text{for } x > 1 \end{cases}$  determine all values of a so that f(x) is continuous at all values of x.
  - (a) a = 0
  - (b) a = 1
  - (c) a = 2
  - (d) a = 3
  - (e) There are no such values of a

- (4) If  $f(x) = x^2 \tan x$ , the slope of the tangent line at  $(\frac{\pi}{3}, f(\frac{\pi}{3}))$  is:
  - (a)  $\frac{4\pi^2 + 6\sqrt{3}\pi}{27}$
  - (b)  $\frac{4\pi^2 + 6\sqrt{3}\pi}{9}$
  - (c)  $\frac{2\sqrt{3}\pi^2 + 2\sqrt{3}\pi}{9}$
  - (d)  $\frac{8\pi}{3}$
  - (e)  $\frac{4\pi\sqrt{3}}{3}$

(5) If 
$$f(x) = \frac{x^3 - 2x}{x^2 + 1}$$
, then  $f'(2) =$ 

- (a) 34/25
- (b) 66/25
- (c) 5/2
- (d) 1/5
- (e) -2/25

(6) If 
$$f(x) = e^{4x}$$
, evaluate  $\lim_{h\to 0} \frac{f(3+h) - f(3)}{h}$ .

- (a)  $e^{12}$
- (b)  $e^7$
- (c)  $4e^{12}$
- (d)  $4e^{7}$
- (e) ∞

- (7) The function  $f(x) = \frac{x^2 + 1}{x^3 + 8}$  has:
  - (a) no vertical or horizontal asymptotes
  - (b) 1 vertical and 1 horizontal asymptote
  - (c) 2 vertical and 1 horizontal asymptote
  - (d) 1 vertical and 2 horizontal asymptotes
  - (e) 1 vertical and no horizontal asymptotes

- (8) A particle moves on a line with velocity  $v(t)=t-\ln(t^2+1)$ . What is its maximum velocity on the interval  $0 \le t \le 2$ ?
  - (a)  $1 \ln 2$
  - (b) 0
  - (c)  $2 \ln 5$
  - (d)  $\ln 2 1$
  - (e)  $\ln 5 2$

- (9) Assume that f and g are differentiable functions defined on  $(-\infty, \infty)$ , f(0) = 6, f'(0) = 10, f(2) = 5, f'(2) = 4, g(0) = 2, and g'(0) = 3. Let h(x) = f(g(x)). What is h'(0)?
  - (a) 4
  - (b) 8
  - (c) 10
  - (d) 12
  - (e) 30

- (10) Assume that y is defined implicitly as a differentiable function of x by the equation  $2x^3 + x^2y xy^3 = 2$ . Find  $\frac{dy}{dx}$  at (1,1).
  - (a)  $\frac{-3}{2}$
  - (b)  $\frac{7}{2}$
  - (c) 0
  - (d) -3
  - (e) -4

- (11) Evaluate  $\lim_{x\to 0} \frac{\cos(2x) 1}{x^2}$ .
  - (a) -2
  - (b) -1
  - (c) 0
  - (d) 1
  - (e) 2

- (12) Water is withdrawn at the constant rate of  $2 \, \mathrm{ft}^3$  / min from a cone-shaped reservoir which has its vertex down. The diameter of the top of the tank measures 4 feet and the height of the tank is 8 feet . How fast is the water level falling when the depth of the water in the reservoir is 2 feet? (Recall that the volume of a cone of height h and radius r is  $V = \frac{\pi}{3} r^2 h$ ).
  - (a)  $\frac{2}{\pi}$  ft/min
  - (b)  $\frac{6}{\pi}$  ft/min
  - (c)  $\frac{4}{\pi}$  ft/min
  - (d)  $\frac{8}{\pi}$  ft/min
  - (e)  $\frac{16}{\pi}$  ft/min

- (13) At the beginning of an experiment a colony has N bacteria. Two hours later it has 4N bacteria. How many hours, measured from the beginning, does it take for the colony to have 10N bacteria?
  - (a)  $\frac{\ln 5N}{\ln 2}$
  - (b)  $\frac{N\ln 5}{2\ln 2}$
  - (c)  $\frac{\ln 5}{\ln 2}$
  - (d)  $4\frac{\ln N}{\ln 2}$
  - (e)  $\frac{\ln 10}{\ln 2}$

- (14) The approximate value of  $(16.32)^{\frac{1}{4}}$  given by linear approximation is equal to
  - (a) 2.01
  - (b) 2.10
  - (c) 2.02
  - (d) 2.20
  - (e) 2.06

(15) Find the critical numbers of  $f(x) = e^x \sin x$  for  $0 \le x \le 2\pi$ .

- (a)  $\pi/4$  and  $5\pi/4$
- (b)  $3\pi/4$  and  $7\pi/4$
- (c)  $\pi/4$  and  $3\pi/4$
- (d)  $\pi/4$  and  $7\pi/4$
- (e)  $\pi/4$  and  $\pi/2$

(16) Compute  $\int_1^4 (\sqrt{x} - \frac{1}{\sqrt{x}}) dx$ 

- (a)  $2\sqrt{2} 10/3$
- (b)  $\sqrt{2} 1/3$
- (c)  $\sqrt{2} + 4/3$
- (d)  $2\sqrt{2} + 14/3$
- (e) 8/3

- (17) Evaluate  $\frac{d}{dx} \left( \int_0^{2x} \arctan t \ dt \right)$  at  $x = \frac{1}{2}$ .
  - (a)  $\pi/3$
  - (b) 1
  - (c)  $\pi/4$
  - (d)  $\pi/2$
  - (e) 2

- (18) A certain function f(x) satisfies f''(x) = 2 3x. We also know that f'(0) = -1 and f(0) = 1. Compute f(2).
  - (a) -1
  - (b) -3
  - (c) 3
  - (d) 1
  - (e) -2

- (19) Compute  $\lim_{x\to 0} (1-x)^{\frac{5}{x}}$ .
  - (a) 1
  - (b)  $e^{3}$
  - (c)  $e^{-5}$
  - (d)  $e^{-3}$
  - (e)  $e^{5}$

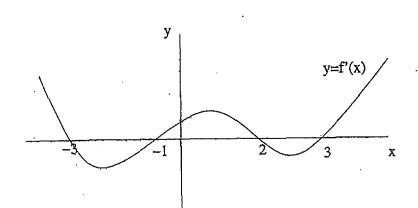
- (20) The derivative of a function f is given by  $f'(x) = (x-1)^2(x-2)^3(x-3)$ . Which of the following are correct?
  - I) f(2) is a local maximum and f(3) is a local minimum of f(x).
  - II) f(x) is increasing on the interval (1,3).
  - III) f(x) is decreasing on  $(-\infty, 1)$  and increasing on  $(1, \infty)$ .
  - (a) only I is correct
  - (b) only I and III are correct
  - (c) only II is correct
  - (d) only II and III are correct
  - (e) only III is correct

- (21) A rectangle is centered at the origin, its sides are parallel to the axes and all of its vertices lie on the curve  $4x^2+y^2=8$ . What is the maximum area of such rectangle?
  - (a) 4
  - (b) 8
  - (c)  $4\sqrt{2}$
  - (d)  $2\sqrt{2}$
  - (e) 2

- (22) Compute  $\int_0^1 \frac{3x^2}{\sqrt{x^3 + 1}} \, dx$ 
  - (a)  $3\sqrt{2} 3$
  - (b)  $2(\sqrt{3}-1)$
  - (c) 2
  - (d)  $2(\sqrt{2}-1)$
  - (e)  $6\sqrt{3} 4$

- (23) On what intervals is the graph of  $f(x) = x^4 + 4x^3 18x^2 6x$  concave downward?
  - (a) on (-3,1) and (2,3)
  - (b) on  $(-\infty, -3)$  and  $(1, \infty)$
  - (c) only on  $(-\infty, 11)$
  - (d) only on  $(3, \infty)$
  - (e) on (-3, 1)

- (24) The figure below illustrates the graph of the derivative of a differentiable function f which is defined in (-4, 4). We can conclude that f(x) achieves local maxima and minima at the following points:
  - (a) local maxima at -3 and 2 and local minima at -1 and 3
  - (b) local maxima at -1 and 3 and local minima at -3 and 2
  - (c) local maxima at -1 and 3 and local minimum at 2
  - (d) local maxima at -3 and 2 and local minimum at -1
  - (e) local maximum at a point between -3 and -1 and a local minimum at 0.



(25) The graph of the function  $f(x) = -\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x + 2$  looks mostly like

