Name	Student ID number
Recitation Instructor	Div-Sec
	Recitation Time

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. The exam has 25 problems, each worth 8 points, for a total of 200 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet. Use a number 2 pencil on the answer sheet. Be sure to fill in the circles for each of the answers of the 25 exam questions.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

1. The tangent line to $f(x) = \frac{32}{x+2}$ at x = 2 is

- A. y = x + 6
- B. y = 2x + 4
- C. y = -8x + 8
- D. y = -2x + 12
- E. y = 8x 8

2. $\lim_{x\to 0} \frac{\cos(2x)-1}{x^2}$ equals

- A. 0
- B. 1
- C. -1
- D. 2
- E. -2

3. If $f(x) = \ln(x^3 + 2x^2)$ then f'(2) equals

- A. 5/8
- B. 4 ln 16
- C. 5/4
- D. 10/3
- E. 8 ln 16

4. If $y \sin x + x \sin y = 20$, then y'(x) equals

- A. $\frac{-(y\sin x \cos x)}{(\sin y y\cos x)}$
- B. $\frac{-(y\cos x + \sin y)}{(\sin x + x\cos y)}$
- C. $\frac{-(x\sin y + \cos y)}{(\sin x + x\cos y)}$
- D. $\frac{-(y\sin x + \cos x)}{(\sin y + y\cos x)}$
- $E. \frac{-(x\sin y + \cos y)}{(\cos x + x\sin y)}$

5. If $f(x) = \tan^{-1}(2x)$ then f''(x) equals

A.
$$\frac{-4x}{(1+x^2)^2}$$

B.
$$\frac{2}{1+4x}$$

C.
$$\frac{-8}{(1+4x)^2}$$

D.
$$\frac{2}{1+4x^2}$$

E.
$$\frac{-16x}{(1+4x^2)^2}$$

6. If $f(x) = \sin(\pi e^{x/2})$ then f'(0) equals

B.
$$\frac{-\pi}{2}$$

C.
$$\frac{\pi}{2}$$

D.
$$\frac{-\pi}{2} e^{1/2}$$

E.
$$\frac{e^{1/2}}{2}$$

7. Find the absolute minimum value for

$$f(x) = x^3 - 3x$$
 on $[-3, 2]$.

- A. 2
- B. -2
- C. -1
- D. -20
- E. -18

8. The largest interval on which

$$f(x) = -2x^3 + 3x^2 + 12x$$

is increasing is

- A. (-1,4)
- B. (2,4)
- C. $(\frac{1}{2}, 2)$
- D. $(-1, \frac{1}{2})$
- E. (-1,2)

9.
$$\lim_{x \to 2} \frac{e^{x^2} - e^4}{x - 2}$$
 equals

A.
$$e^4$$

B.
$$2e^4$$

C.
$$e^4/4$$

D.
$$8e^{4}$$

E.
$$4e^4$$

10.
$$\int_{0}^{2} |x-1| dx \text{ equals}$$

E.
$$5/2$$

11.
$$\int_0^3 \frac{x}{\sqrt{x+1}} dx \text{ equals}$$

A.
$$\frac{8}{3}$$

B.
$$\frac{2}{3}$$

D.
$$\frac{4}{3}$$

E.
$$\frac{5}{3}$$

12.
$$\int_0^1 (1+x^2)^2 dx$$
 equals

A.
$$\frac{14}{25}$$

B.
$$\frac{4}{3}$$

D.
$$\frac{28}{15}$$

E.
$$\frac{7}{3}$$

- 13. Let $f(x) = x^3 x^2 + 2x + 1$. If $x_0 = 1$ then the first approximation, x_1 , to a root of f(x) using Newton's method is
 - A. 0
 - B. 1/3
 - C. 2/3
 - D. 4/3
 - E. 2

14. Determine the number of vertical and horizontal asymptotes for

$$f(x) = \frac{x^4}{(x^2 - 1)(x^2 + 4)}.$$

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

15. If $f'(x) = 2x^3 + x$ and f(0) = 4 then f(2) equals

- A. 14
- B. 12
- C. 24
- D. 18
- E. 25

- 16. Determine b so that $f(x) = x^2 + \frac{b}{x^3}$ has an inflection point at x = 1.
 - A. 1
 - B. $-\frac{1}{6}$
 - C. $\frac{1}{3}$
 - D. $-\frac{1}{3}$
 - E. $\frac{1}{6}$

17. Determine a so that

$$f(x) = \left\{ egin{array}{ll} 5+x & ext{if } x \leq 0, \\ \sqrt{x^2+a} & ext{if } x > 0. \end{array}
ight.$$

is continuous at x = 0.

- A. 0
- B. 1
- C. 25
- D. 5
- E. -5

18. Let f(x) be a continuous function such that $1-x^2 \le f(x) \le 1+x^2$.

Then $\int_0^1 f(x)dx$ must be in the interval

- A. $\left[\frac{5}{6}, \frac{4}{3}\right]$
- B. $\left[\frac{2}{3}, \frac{4}{3}\right]$
- C. $\left[\frac{2}{3}, \frac{7}{6}\right]$
- D. $\left[1, \frac{4}{3}\right]$
- E. $\left[1, \frac{7}{6}\right]$

19. Let

$$f(x) = \begin{cases} x^2 + 4x + 1 & \text{if } x < 0, \\ x^2 - 2x + 1 & \text{if } x \ge 0. \end{cases}$$

Which of the following statements is true?

- A. f has a local minimum at x = 0
- B. f has an inflection point at x = 0
- C. f has a local maximum at x = 0
- D. f is discontinuous at x = 0
- E. f is differentiable at at x = 0

20. If
$$\int_0^x f(t)dt = x^4 - 3x^2 + x$$
 for all x then $f(1)$ equals

- A. -1
- B. 0
- C. 1
- D. 2
- E. 3

- 21. Let f(x) be differentiable on $(-\infty, \infty)$ and let F(x) = f(f(x)). Then F'(x) equals
 - A. f'(f(x))
 - B. $f'(f(x)) \cdot f'(x)$
 - C. $f'(f(x)) \cdot f(x)$
 - D. $f'(x) \cdot f(f'(x))$
 - E. 2f'(f(x))

- 22. A kite is 100 ft above the ground and moves horizontally at a rate of 10 ft/sec. At what rate (in radians/sec) is the angle between the string and the ground changing when 200 ft of string has been let out?
 - A. -1/10
 - B. -1/20
 - C. -1/30
 - D. -1/40
 - E. -1/50

23. A box with an open top is constructed from a square piece of cardboard 5 ft. wide by cutting out a square from each of the four corners and then bending up the sides. The box is then fitted with a lid cut from a second piece of cardboard. Assume the length of the sides of the squares cut out is x. Find the total surface area of the box, including the lid, as a function of x. A(x) =

A.
$$50 - 20x$$

B.
$$50 - 10x - 3x^2$$

C.
$$150 - 120x + 24x^2$$

D.
$$150 - 60x + 6x^2$$

E.
$$50 - 10x$$

- 24. Let g(x) be a differentiable function on $(-\infty, \infty)$ such that g(5) = -5 and g(6) = 3. Which of the following statements must be true?
 - I. There is c in the interval (5,6) with g(c) = 8.
 - II. There is c in the interval (5,6) with g'(c) = 8.
 - III. There is c in the interval (5,6) with g(c) = 0.
- A. Just I
- B. Just I and II
- C. Just I and III
- D. Just II and III
- E. All three

- 25. The largest area of an isosceles triangle that can be inscribed in a circle of radius 1 is
 - A. 1
 - B. $\frac{\sqrt{3}}{2} \pi$
 - $C. \ \frac{3\sqrt{3}}{4}$
 - D. $\sqrt{3} \pi$
 - E. $\frac{\sqrt{3}}{2}$

Notes: You can assume that $\sqrt{3} = 1.73$ and $\pi = 3.14$. An isosceles triangle has two sides of equal length.