1. The domain of the function $\sqrt{1-|x-\bar{5}|}$ is

- A. [-1, 5]
- B. (3,6)
- C. (-5,1)
- D. [2, 4]
- E. [4, 6]

2. Which function is graphed below?

- A. $\ln(-x)$
- B. $-\ln x$
- C. e^{-x}
- D. $-e^{-x}$
- E. $-e^x$

3. One of the following is INCORRECT. Which one? For positive numbers x, y

A.
$$e^{x+y} = e^x e^y$$

B.
$$(e^x)^y = e^{xy}$$

C.
$$\sqrt{x+y} = \sqrt{x} + \sqrt{y}$$

D.
$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$

E.
$$\ln(x^y) = y \ln x$$

4. Suppose that f(x) + g(x) = h(x), $\lim_{x \to 2} g(x) = 3$ and $\lim_{x \to 2} h(x) = -1$. If f is continuous, then f(2) must be

B.
$$-2$$

E. There is not enough information to tell for sure

- 5. The horizontal asymptote(s) of the function $F(x) = e^{-e^x}$ is (are)
 - A. y = e
 - B. y = 0 and y = 1
 - C. y = 0 and y = 1/e
 - D. $y = e^{-e}$
 - E. There is no horizontal asymptote.

- 6. Consider the secant line of the curve $y=x^2$ through the points where x=2 and where x=4. The slope of this secant is
 - A. 4
 - B. 8
 - C. 3
 - D. 6
 - E. 18

7. If $\varphi(t) = \sqrt{t}e^t$ then $\varphi'(1) =$

- A. 1
- B. 2e
- C. 3e/2
- D. $1/(2\sqrt{e})$
- E. 0

8. In the atmosphere a spherical shock wave, caused by a sonic boom, is traveling outwards at 1/3 km/s. At what rate, in km²/s, does the area occupied by the shock wave increase, 9 seconds after the boom? (The area of a sphere of radius r is $4\pi r^2$.)

- Α. 36π
- B. 18π
- C. 8π
- D. 24π
- E. 16π

9. When $x = -\frac{\pi}{6}$, $\frac{d}{dx} 3^{\sin x} =$

- A. ln 3
- B. $\frac{\sqrt{3}}{2}$
- C. $\ln \sqrt{3}$
- D. 3
- E. $\sqrt{3}$

- 10. The slope of the tangent line to the curve $e^x + \cos \pi x + e^y + \cos \pi y = e + 1$ at (1,0) is
 - Α. π
 - $B. -\pi$
 - C. πe
 - D. e
 - E. -e

- 11. A radioactive substance has a half–life of 50 days. Initially a sample contains 15 mg. After how many days will only 2 mg remain?
 - A. $50 \ln \frac{15}{2}$
 - B. $50 \frac{\ln 15}{\ln 2}$
 - C. $50 \frac{\ln(2/15)}{\ln(1/2)}$
 - D. $\frac{\ln 2}{50 \ln(2/15)}$
 - E. $\frac{\ln(15/2)}{50}$

12. A particle moves along the graph of $y = x^2 + x$. When the particle is at the point (1,2), the x coordinate is increasing at 3 units per second. At that moment, how fast is the distance from the particle to the point (-1,0) changing?

A.
$$6\sqrt{2}$$

B.
$$\sqrt{2} + \sqrt{6}$$

D.
$$\sqrt{12}$$

- 13. If f is a differentiable function on $(-\infty, \infty)$, f(2) = 4, and f(6) = 8, which of the following statements must be true?
 - I. There is a c in (2,6) such that f(c)=6.
 - II. There is a c in (2,6) such that f'(c) = 6.
 - III. There is a c in (2,6) such that f'(c) = 1.

- A. Only I
- B. Only II
- C. Only I and II
- D. Only I and III
- E. Only II and III

- 14. The absolute maximum and absolute minimum of $g(x) = x^2 2x^4$ on [-1, 1] are
 - A. 1 and 0
 - B. 1 and -1
 - C. 1/8 and 0
 - D. 1/4 and -1
 - E. 1/8 and -1

15.
$$\lim_{x\to 0} \frac{\cos(2x) - \cos(3x)}{x^2} =$$

- A. 5/2
- B. -1/2
- C. 13/2
- D. 1
- E. 0

- 16. A farmer with N ft of fencing wants to enclose a rectangular region and then divide it into 3 pens with fencing parallel to one side of the rectangle. What is the largest possible total area of the 3 pens in ft²?
 - A. $N^2/9$
 - B. $N^2/32$
 - C. $N^2/20$
 - D. $N^2/8$
 - E. $N^2/16$

- 17. Suppose F is a continuous function on $(-\infty, \infty)$. If it has a local extremum at c, which of the following must be true?
 - I. F'(c) = 0.
 - II. F'(c) = 0 or F is not differentiable at c.
 - III. $F''(c) \neq 0$.

- A. Only I
- B. Only II
- C. Only III
- D. Only I and II
- E. Only II and III

18.
$$\frac{d}{dx} \int_{1}^{x^2} \frac{dt}{1+t^2} =$$

A.
$$-\ln(1+x^2) + \ln 2$$

B.
$$1/(1+x^2)$$

C.
$$x^2/(1+x^2)$$

D.
$$2x/(1+x^4)$$

E.
$$4x^3/(1+x^2)$$

19.
$$\int_{-1}^{0} \frac{dx}{(x-1)^3} =$$

A.
$$-5/8$$

B.
$$-3/8$$

C.
$$-45/16$$

D.
$$-1/2$$

$$20. \int_0^{\pi/2} \cos 3t dt =$$

A.
$$-1/2$$

E.
$$-1/3$$

21. If $h''(x) = e^x(x-1)^3(x+2)$, find all open intervals where h is concave down.

- A. (0,1)
- B. $(-\infty,0)$ and $(1,\infty)$
- C. (-2,0) and (0,1)
- D. (-2,1)
- E. $(-\infty, -2)$ and $(1, \infty)$

22. Find all open intervals where $\varphi(x) = \frac{3+x^2}{2-x^2}$ is increasing.

- A. $(-\infty,0)$
- B. $(-\infty, -\sqrt{2})$ and $(-\sqrt{2}, 0)$
- C. $(-\sqrt{2}, \sqrt{2})$
- D. $(0, \sqrt{2})$ and $(\sqrt{2}, \infty)$
- E. $(0, \infty)$

23. If
$$f''(x) = 6x + 2$$
, $f(1) = 2$ and $f'(1) = 4$ then $f(3) =$

- A. 18
- B. 30
- C. 34
- D. 8
- E. 22

24. If
$$\int_{2}^{4} g(t)dt = 2$$
 and $\int_{2}^{5} g(t)dt = 6$, then $\int_{4}^{5} g(t)dt =$

- Δ _4
- B. 4
- C. -8
- D. 8
- E. 12

25.
$$\int_0^1 x\sqrt{1+3x^2} \ dx =$$

- A. 2
- B. 2/3
- C. 1/3
- D. 7/9
- E. 5/6