
- 1. The distance between the points (2,1,4) and (1,2,2) is
 - A. 2
 - B. 4
 - C. $\sqrt{6}$
 - D. $\sqrt{21} 3$
 - E. 12

- 2. The radius of the sphere $x^2 + y^2 + z^2 + 2x y = 1$ is
 - A. 1/2
 - B. 1
 - C. 3/2
 - D. 2
 - E. 5/2

- 3. A bug is doing 2 meters/min along the diagonal of a terrarium, indicated in the figure in overview. The terrarium is mounted on a cart going at 6 meters/min, again as indicated below. The speed of the bug relative to the ground is, in meter/min
 - A. $\sqrt{28}$
 - B. 5
 - C. $\sqrt{37}$
 - D. $\sqrt{32}$
 - E. 4

- 4. $(\vec{\mathbf{i}} + \vec{\mathbf{j}} + \vec{\mathbf{k}}) \cdot (\vec{\mathbf{i}} 2\vec{\mathbf{j}} 2\vec{\mathbf{k}}) =$
 - A. 2
 - B. 1
 - C. 0
 - D. -1
 - E. -3

- 5. Which is true? For vectors $\vec{\mathbf{a}}, \vec{\mathbf{b}}$
 - I $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is a vector;
 - II $\vec{a} \times \vec{b}$ is a real number;
 - III $\vec{a} \times \vec{b} = \vec{0}$ if \vec{a} and \vec{b} are perpendicular;
 - IV $\vec{a} \times \vec{b} = \vec{0}$ if \vec{a} and \vec{b} are parallel.
 - A. Only I
 - B. Only II
 - C. Only I and III
 - D. Only I and IV
 - E. Only II and III

- 6. The \vec{j} -component of $(2\vec{i} + \vec{j}) \times (\vec{i} + \vec{j} \vec{k})$ is
 - A. -1
 - B. 0
 - C. 1
 - D. 2
 - E. -3

- 7. The curves $y = x^3 2x$ and $y = x^2$ intersect at three points: (-1,1), (0,0), and (2,4). Find the area of the region in the 2^{nd} quadrant that is enclosed by the curves.
 - A. 5/12
 - B. 7/4
 - C. 4/7
 - D. 5/2
 - E. 2/3

8. The base of a solid is the region in the xy plane bounded by the curve $y = x - x^2$ and the x-axis. If cross sections perpendicular to the x-axis are squares, the volume of the solid is

A.
$$\int_0^2 (x-x^2)^2 dx$$

B.
$$\int_0^1 (x-x^2)xdx$$

C.
$$\int_0^1 (x-x^2)^2 x dx$$

D.
$$\int_0^1 (x-x^2)^2 dx$$

E.
$$\int_0^1 \frac{1}{2} (x - x^2)^2 dx$$

9. Let D be the region in the xy plane given by the inequalities $0 \le y$, $y \le x - 1$ and $x \le 2$. The volume of the solid obtained by revolving D about the y axis is

A.
$$\int_{1}^{2} \pi (x-1)^{2} dx$$

B.
$$\int_{1}^{2} 2\pi (x-1)^{2} dx$$

C.
$$\int_{1}^{2} (2\pi x^{2} - 2\pi x) dx$$

D.
$$\int_{1}^{2} (\pi x^{2} - \pi x) dx$$

E.
$$\int_0^2 (2\pi x^2 - 2\pi x) dx$$

10. A 5-lb cable is 10 feet long and hangs vertically from the top of a 30 ft tall wall. How much work is required to lift the cable to the top of the wall?

- 11. If f(x) satisfies $0 \le f(x) \le x$ for $1 \le x \le 3$, what is the maximum possible value of the average of f(x) on [1,3]?
 - A. 2
 - B. 3
 - C. 4
 - D. 6
 - E. 8

- $12. \int_0^{\pi/2} 2x \cos x dx =$
 - A. $2\pi 1$
 - B. $\pi 1$
 - C. $\pi 2$
 - D. $\pi + 1$
 - E. $2\pi + 1$

- 13. $\int_0^{\pi/2} \sin^3 x \cos^3 x dx =$
 - A. 5/12
 - B. 1/12
 - C. 2/15
 - D. 4/15
 - E. 1/24

- 14. Which of the following integrals arises after making a trigonometric substitution to compute $\int \frac{x^2 dx}{\sqrt{4-x^2}}$?
 - ${\rm A.} \ \int 4 \tan^2 \theta \sec \theta d\theta$
 - B. $\int \frac{2\sin^2 \theta}{\cos \theta} d\theta$
 - $C. \int \frac{4\tan^2\theta}{\sec\theta} d\theta$
 - $D. \int 4 \sin^2 \theta \cos \theta d\theta$
 - E. $\int 4\sin^2\theta d\theta$