Name:	
Student ID:	
Lecturer:	
Recitation Instructor:	
Recitation Time:	

Instructions:

- 1. This package contains 11 problems worth 9 points each.
- 2. Please supply <u>all</u> information requested above and on the mark–sense sheet. You get 1 point for supplying all information correctly.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

- 1. For the integral $\int_{1}^{9} \frac{6}{x} dx$ the Midpoint Rule with n=4 gives the approximate value
 - A. 8.5
 - B. 9
 - C. 10.5
 - D. 11
 - E. 12.5.

 $2. \int_{0}^{\frac{\pi}{3}} \sin^{-2} x \cos^{3} x \, dx =$

- A. 0
- B. 1
- C. $\frac{\sqrt{3}}{2}$
- D. integral is divergent
- E. $\frac{3\sqrt{3}}{8} 1$

3. Which of the following integrals are convergent?

I.
$$\int_{0}^{\infty} \sin(2t) dt.$$

$$II. \int_{1}^{\infty} \frac{\sin^2 t}{t^3 + 1} dt.$$

- A. Neither.
- B. Only I.
- C. Only II.
- D. Both are.
- E. None of the above is correct.

4. The length of the curve $y = \sqrt{x} - \frac{x^{\frac{3}{2}}}{3}$, $1 \le x \le 9$ is

A.
$$\int_{1}^{9} \left(\frac{1}{2x} + \frac{x}{2} \right) dx$$

$$B. \int_1^9 \left(\frac{1}{2x} - \frac{x}{2}\right) dx$$

$$C. \int_{1}^{9} \left(\frac{1}{2\sqrt{x}} + \frac{\sqrt{x}}{2} \right) dx$$

D.
$$\int_{1}^{9} \left(\frac{1}{2\sqrt{x}} - \frac{\sqrt{x}}{2} \right) dx$$

E.
$$\int_{1}^{9} \left(\frac{1}{\sqrt{x}} - \sqrt{x}\right) dx$$

5. If masses of 3kg, 3kg, and 1kg are placed at the points (0,2), (2,0) and (-3,-3), where should a mass of 2kg be placed so that both moments M_x , M_y of the system are 0?

A.
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

B.
$$\left(-\frac{3}{2}, -\frac{3}{2}\right)$$

C.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$D. \quad \left(\frac{1}{2}, \frac{5}{2}\right)$$

$$E. \left(-\frac{1}{2}, \frac{1}{2}\right)$$

 $6. \sum_{n=1}^{\infty} \frac{2^{n+2}}{3^n} =$

- A. 6
- B. 2
- C. 12
- D. 8
- E. series is divergent

7. Find the following limits.

a.
$$\lim_{n \to \infty} \frac{n^2}{e^n}$$

b.
$$\lim_{n \to \infty} \frac{\sqrt{2n^2 + 3n}}{2n + 1}$$

A.
$$a = 1$$
, b does not exist

B.
$$a = 0$$
, b does not exist

C. a does not exist,
$$b = \frac{1}{\sqrt{2}}$$

D.
$$a = 0$$
, $b = \frac{1}{\sqrt{2}}$

E.
$$a = 0$$
, $b = 1$

8. Which of the following statements are true?

I. If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n\to\infty} a_n = 0$.

II. If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

III. If
$$\lim_{n\to\infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

9. The series
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$$

- A. converges by integral test.
- B. converges by comparison test.
- C. converges because $\lim_{n\to\infty} \frac{1}{n(\ln n)} = 0$.
- D. diverges because $\lim_{n\to\infty} \frac{1}{n(\ln n)} \neq 0$.
- E. diverges by integral test.

10. The series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^3 - n}}$$

- A. converges because $\lim_{n\to\infty} \frac{1}{\sqrt{2n^3-n}} = 0$.
- B. diverges by integral test.
- C. diverges by comparison test.
- D. diverges because $\lim_{n\to\infty} \sqrt{2n^3 n} \neq 0$.
- E. converges by limit comparison test.

- 11. By the Alternating Series Estimation Theorem, if we approximate $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ with the sum of the first 4 terms, we are guaranteed an error less than or equal to
 - A. $\frac{1}{120}$
 - B. $\frac{1}{240}$
 - C. $\frac{1}{256}$
 - D. $\frac{1}{512}$
 - E. $\frac{1}{720}$