NAME	Page 1	/14
STUDENT ID	Page 2	/27
RECITATION INSTRUCTOR	Page 3	/27
	Page 4	/32
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this exam.
- (6) 1. Prove the identity $(\sin x + \cos x)^2 = 1 + \sin 2x$.

(8) 2. If $f(x) = \frac{1}{x+7}$ and $g(x) = x^3 - 8$ find the composite functions $f \circ g$ and $g \circ f$ and give their domains.

$$(f \circ g)(x) =$$

Domain of $(f \circ g)$

$$(g \circ f)(x) =$$

Domain of $(g \circ f)$

(5) 3. If $\tan \theta = -3$ and $\frac{\pi}{2} < \theta < \pi$, find the following:

$$\sin \theta =$$

$$\cos \theta =$$

$$\sec \theta =$$

$$\csc \theta =$$

$$\cot \theta =$$

(8) 4. Find a formula for the inverse of the function $f(x) = 5 - 4x^3$.

$$f^{-1}(x) =$$

(9) 5. Find the equations of the vertical and horizontal asymptotes of the function $y = \frac{x}{x^2 - x - 2}$.

Vertical asymptotes

Horizontal asymptotes

- (5) 6. (a) Complete the definition: The function f is continuous at a if $\lim_{x\to a}$ (b) Use (a) to explain why the function $f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$ is discontinuous at 1.

(18) 7. For each of the following, fill in the boxes below with a finite number, or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

(a) $\lim_{x \to 0^-} \frac{3x}{|x|} =$

(b) $\lim_{x \to (-\frac{\pi}{2})^-} \sec x =$

 $x \rightarrow \left(-\frac{\pi}{2}\right)^{-}$

(c) $\lim_{x\to\infty} \frac{2+\sqrt{x}}{2-\sqrt{x}} =$

(d) $\lim_{x \to -\infty} (x^3 - 5x^2) =$

(e) $\lim_{x\to 0} \frac{\tan x}{4x} =$

(f) $\lim_{x\to 0} \ln\left(\frac{e^x+2}{3}\right) =$

(9) 8. Evaluate the following:

(a) $\cos(\pi \ln e^{1/4}) =$

(b) $\tan(\pi e^{-\ln 4}) =$

(c) $\sin\left(\frac{\pi}{\ln e^{-2}}\right) =$

•

.

(10) 9. Find the derivative of the function $f(x) = \sqrt{1+2x}$ using the definition of the derivative: $f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$. (0 credit for using a formula for the derivative).

(6) 10. Find an equation of the tangent line to the curve $y = \frac{3}{x^2} - \frac{4}{x^3}$ at the point (-1,7).

ċ

(16) 11. Find the derivatives of the following functions. (It is not necessary to simplify).

(a)
$$f(x) = x^2 \sqrt{x} + \frac{1}{x\sqrt{x}}$$
.

.

(b) $y = e^x \cot x$.

(c) $f(x) = \frac{x^2 + \sin x}{1 + \cos x}$.

(d) $g(t) = 4 \sec t + \tan t$.

. .