NAME _____

10-digit PUID ______

RECITATION INSTRUCTOR _____

RECITATION TIME _____

Page 1	/12
Page 2	/30
Page 3	/28
Page 4	/30
TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this exam.
- (6) 1. Find a formula for the inverse of $f(x) = \sqrt{7-2x}$.

$$f^{-1}(x) =$$

(6) 2. Let f(x) = 2x + c and $g(x) = 3x + c^2$. Find a nonzero constant c such that

$$(f \circ g)(x) = (g \circ f)(x).$$

(6) 3. If $\cos \theta = -\frac{1}{2}$ and $\pi < \theta < \frac{3\pi}{2}$, find the following:

 $\sin \theta =$

 $\tan \theta =$

(6) 4. Solve the equation 3x + 2|x - 3| = 7.

x =

(6) 5. Find the equations of the vertical and horizontal asymptotes of the function $f(x) = \frac{1-2x}{x+6}.$

Vertical asymptotes

Horizontal asymptotes

- (6) 6. (a) Complete the definition: The function f is continuous at a if $\lim_{x\to a}$
 - (b) For what value of a is the function f continuous?

$$f(x) = \begin{cases} ax^2, & \text{if } x \le 1\\ \sqrt{x} - a, & \text{if } x > 1 \end{cases}$$

a =

(6) 7. Find an equation of the tangent line to the curve $y = 3x^2 - 5x$ at the point (2, 2).

(16) 8. For each of the following, fill in the boxes below with a finite number, or one of the symbols $+\infty$, $-\infty$, or DNE (does not exist). It is not necessary to give reasons for your answers.

(a)
$$\lim_{x \to \infty} x(\sqrt{4x^2 + 1} - 2x) =$$

(b)
$$\lim_{x \to 1} \frac{x-2}{(x-1)^2} = .$$

(c)
$$\lim_{x\to 2^+} \frac{|2-x|}{2-x} =$$

(d)
$$\lim_{x \to \infty} \frac{x + x^3 + 3x^5}{1 - x^2 + x^4} =$$

(4) 9. Simplify $\ln(\ln e^e)$.

$$\ln(\ln e^e) =$$

(4) 10. Solve $ln(x+1)^2 = 2$ for x.

$$x =$$

(4) 11. If
$$\lim_{x\to 2} \frac{f(x)-5}{x-2} = 4$$
, find $\lim_{x\to 2} f(x)$.

$$\lim_{x \to 2} f(x) =$$

12. Find the derivative of the function $f(x) = \frac{2}{x+3}$ using the definition of the derivative: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. (0 credit for using a formula for the derivative).

13. Which of the following statements about the function

$$f(x) = \left\{ egin{array}{ll} x^2, & ext{if } -1 \leq x < 0 \ 1, & ext{if } x = 0 \ x^2, & ext{if } 0 < x < 1 \ 0, & ext{if } 1 \leq x < 2 \end{array}
ight.$$

are true and which are false? (Circle T or F)

(a) $\lim_{x \to 1^-} f(x) = 0$

T F

F

(b) $\lim_{x\to 0} f(x) = 1$ (c) $\lim_{x\to (-1)^+} f(x) = 1$

- \mathbf{T} F
- 14. For what value(s) of x does the graph of $f(x) = 3x^2 + x + 7$ have a horizontal tangent?

- 15. Find the derivatives of the following functions. (It is not necessary to simplify).
 - (a) $y = (\tan x)(x^3 + 2)$.
 - (b) $f(x) = \frac{e^x}{1+x}$.