NAME	Page 1	/16
STUDENT ID	Page 2	/29
RECITATION INSTRUCTOR	Page 3	/28
RECITATION INSTRUCTOR	Page 4	/27
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3 and 4.
- 2. The test has four (4) pages, including this one.

EXAM 2

- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this exam.

(a) $y = e^{-5x} \operatorname{cc}$	os $3x$		 	 y.
		ļ		
			•	
(b) $f(x) = \sin^2 x$	$^{-1}[(\ln x)^2]$	<u></u>	·	
			 	 •
			•	
(c) $y = \ln(\sec x)$	$x + \tan x$	<u> </u>		
		İ		
(d) $F(x) = \frac{\sin x}{1 - \sin x}$	2 x	<u> </u>	 	

Name: _____

(10) 2. Find an equation of the tangent line to each curve at the given point.

(a) $y = \sin(\sin x)$ at the point $(\pi, 0)$.

(b) $y = \ln(\ln x)$ at the point (e, 0).

(9) 3. Find the exact value of each expression.

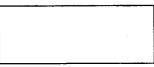
(a) $\tan^{-1}(-\sqrt{3})$

(b) $\sin^{-1}(\sin(\frac{4\pi}{3}))$

(c) $\cos(\cos^{-1}(0.2))$

(4) 4. Find the differential dy of the function $y = x \ln x$.

dy =


(6) 5. Find the second derivative of the function $h(x) = \tan^{-1}(x^2)$.

h''(x) =

Name:

(6) 6. If $\sin(y^2) = xy$, find $\frac{dy}{dx}$ using implicit differentiation.

(10) 7. Find an equation of the tangent line to the curve $x^2y^2 = (y+1)^2(4-y^2)$ at the point (0,-2).

(12) 8. (a) Find the linear approximation of $f(x) = \sec x$ at $a = \frac{\pi}{4}$.

 $\sec x \approx$

, for x near $\frac{\pi}{2}$

(b) Estimate sec 47°.

 $\sec 47^{\circ} \approx$

Name: _

(12) 9. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of 2 ft/sec, how fast is the angle between the top of the ladder and the wall changing when the angle is $\pi/4$ rad?

(15) 10. A plane flying horizontally at an altitude of 3 mi passes directly over a radar station. The distance between the station and the plane is increasing at a rate of 600 mi/hr. Find the speed of the plane when the distance between the plane and the station is 5 mi.