NIAME		<u></u>	· · ·
NAME		Page 1	/16
STUDENT ID		Page 2	/25
RECITATION INSTRUCTOR		Page 3	/34
		Page 4	/25
RECITATION TIME	<u> </u>	TOTAL	/100

DIRECTIONS

- 1. Write your name, student ID number, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4.
- 2. The test has five (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes or calculators may be used on this test.

(8)	1.	Find	the	center	and	radius	of	the	spher	·e
`. /				_	_	4x-2y				

center: (,	,)
radius:			

2. If $\vec{a} = 2\vec{i} - \vec{j} + 3\vec{k}$, find a vector \vec{b} whose length is 8 and whose direction is opposite to that of \vec{a} .

MA 166 Exam 1	Spring 2002	Name	ne			
		SP8				
) 3 Cons	ider the thr	ee points $P(0,0)$	0) Q(1.1	0), and E	$R\left(\frac{1}{2} \frac{1}{2} z\right)$	1
, o. Comb	iddi olic olli	ce points i (o, o	, 0), & (+, +,	o), and r	$(2, 2, \sim)$	

(a) Find $\overrightarrow{PQ} \times \overrightarrow{PR}$ (in terms of z).

Page 2/4

(b) Find the area of the triangle PQR (in terms of z).

(c) Find all values of z for which the area of the triangle PQR is equal to 1.

(10) 4. Suppose that the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ and that $|\vec{a}| = 2$ and $|\vec{b}| = 15$.

(a) Find $\vec{a} \cdot \vec{b}$

(b) Find $|\vec{a} \times \vec{b}|$

(12) 5. Find the area of the region enclosed by the curves y = |x| and $y = 2 - x^2$.

(12) 6. Use the method of washers to find the volume of the solid obtained by rotating about the y-axis the region bounded by the curves $y^2 = x$ and x = 2y.

(10) 7. Use the method of cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region bounded by the lines y = x, y = 2x and y = 2.

(12) 8. A tank in the shape of the bottom half of a sphere of radius 5 ft has an outlet at the top and is full of water. Set up an integral for the work W required to pump all the water out of the outlet. (Use the fact that water weighs 62.5 lbs/ft³, and take the axis downwards with the origin at the center of the top of the tank). Do not evaluate the integral.

Name

$$W = \int$$

(5) 9. The average value of the function $f(x) = \cos x$ on the interval $[0, \pi]$ is

