NAME	Page 1	/15
10-DIGIT PUID	Page 2	/29
RECITATION INSTRUCTOR	Page 3	/32
	Page 4	/24
RECITATION TIME	TOTAL	/100

DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators nor any electronic devices may be used on this test.

Find the integrals in problems 1-6.

$$(6) \quad 1. \int_0^{\frac{\pi}{4}} \cos^2 x \, dx$$

MA 166	Exam 2	Spring 2008	Name	Page 2/4
		~p6 2000	1100000	1 650 2/

(9) 3.
$$\int \frac{dx}{\sqrt{4 - (x+3)^2}}$$

$$(11) \quad 4. \int \frac{x^2 + 8x - 3}{x^3 + 3x^2} dx$$

$$(9) \quad 5. \int \frac{\cos x}{\sin^2 x + \sin x} \, dx$$

MA	166	
MA	166	

Exam 2

Spring 2008

Name
$$_{-}$$

Page 3/4

(6) 6.
$$\int \frac{x+1}{x^2+9} \, dx$$

(10) 7. Find the area of the region under the curve $y = \frac{x+1}{x-1}$ from x = 2 to x = 3.

(10) 8. Determine whether the integral below is convergent or divergent. Find its value if it is convergent. <u>Important</u>: You must use the definition of improper integrals.

$$\int_{-\infty}^{0} \frac{1}{2x-5} \, dx$$

(6) 9. Circle T if true or F if false.

(a)
$$\int_1^\infty \frac{1}{x\sqrt{x}} dx$$
 is divergent

T F

(b)
$$\int_{-1}^{2} \frac{1}{x^2} dx = -\frac{3}{2}$$

T F

(c)
$$\int_0^1 \frac{1}{\sqrt{1-x}} dx$$
 is convergent

 \mathbf{T} \mathbf{F}