| NAME                  | Page 1 | /19  |
|-----------------------|--------|------|
| 10-DIGIT PUID         | Page 2 | /30  |
| RECITATION INSTRUCTOR | Page 3 | /26  |
| DECIMATION TO         | Page 4 | /25  |
| RECITATION TIME       | TOTAL  | /100 |

## DIRECTIONS

- 1. Write your name, 10-digit PUID, recitation instructor's name and recitation time in the space provided above. Also write your name at the top of pages 2, 3, and 4.
- 2. The test has four (4) pages, including this one.
- 3. Write your answers in the boxes provided.
- 4. You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- 5. Credit for each problem is given in parentheses in the left hand margin.
- 6. No books, notes, calculators, or any electronic devices may be used on this test.

(9) 1. 
$$\int_0^{\frac{\pi}{4}} \frac{\sin^3 x}{\cos^2 x} \, dx$$

$$(10) \quad 2. \int \frac{1}{x^2 \sqrt{x^2 - 9}} \ dx$$

(10) 3. 
$$\int \frac{dt}{\sqrt{t^2+4}} [\text{Hint:} \int \sec x dx = \ln|\sec x + \tan x| + C]$$



(10) 4.  $\int \frac{2x}{(x-1)^2} dx.$ 



(10) 5. Find the area of the region under the curve  $y = \frac{1}{x^3 + x}$  from x = 1 to x = 2.

(10) 6. Find the volume of the solid of revolution obtained by rotating about the x-axis the region bounded by the curves  $x = \frac{\pi}{2}$ , y = 0 and  $y = \sin x$ ,  $\frac{\pi}{2} \le x \le \pi$ .



(8) 7. Determine whether the integral below is convergent or divergent, and find its value if it is convergent. <u>Important</u>: You must use the definition of improper integrals.

$$\int_0^\infty x e^{-x^2} dx$$



(8) 8. For each of the improper integrals below, circle C if it is convergent or D if it is divergent. (You need not show work for this problem).

(a) 
$$\int_{2\pi}^{\infty} \sin \theta d\theta$$

C D

(b) 
$$\int_{2}^{3} \frac{1}{\sqrt{3-x}} dx$$

C D

(c) 
$$\int_{-\infty}^{0} \frac{dx}{\sqrt{2-x}}$$

C D

(d) 
$$\int_0^2 \frac{dx}{(x-1)^2}$$

C D

| MA        | 166 | $\operatorname{Exam}$ | 2 |
|-----------|-----|-----------------------|---|
| _ , , , , | 100 | 117500111             | ~ |

| N  | _            | 'n           | _ | _ |
|----|--------------|--------------|---|---|
| IN | $\mathbf{a}$ | $\mathbf{n}$ | Ω | е |

(8) 9. Find the length of the curve  $y = \frac{2}{3} x^{3/2}$ ,  $0 \le x \le 3$ .



- (9) 10. Consider the lamina bounded by the curves y = x and  $y = x^2$ , and with density  $\rho = 1$ . Find the following.
  - (a) The mass m of the lamina

$$m =$$

(b) The moment  $M_y$  of the lamina about the y-axis.

$$M_y =$$

(c) The x-coordinate  $\overline{x}$  of the center of mass of the lamina.

$$\overline{x} =$$

- (8) 11. Determine whether each sequence below converges or diverges and if it converges find its limit. (You need not show work for this problem).
  - (a)  $\{(-1)^n n e^{-n}\}$



(b)  $a_n = \frac{\sin^2 n}{n+3}$ 



(c)  $\{\cos(n\pi)\}$ 



(d)  $a_n = n\sin(\frac{1}{n})$ 

