MA 261 EXAM 1 Name____

- 1. Find the equation of the plane containing (0, 1, 2) and whose normal is perpendicular to both $\bar{a} = \bar{i} + \bar{j}$, $\bar{b} = \bar{j} \bar{k}$.
 - A. x + y + z = 3B. -x + y + z = 3C. x - y - z = 3
 - D. x + y + z = -3
 - E. None of the above

2. The distance between the plane 2x + y + 2z = 4and the point (1, 7, 2) is

- A. 1
- B. 2
- C. 3
- D. 4

E. None of the above

3. A unit tangent vector to the graph of $y = 2x^3$ at (1, 2) is given by

A.
$$\frac{\overline{i} + 6\overline{j}}{\sqrt{37}}$$

B.
$$\frac{\overline{i} + 4\overline{j}}{\sqrt{17}}$$

C.
$$\frac{\overline{i} - \overline{j}}{\sqrt{2}}$$

D.
$$\frac{2\overline{i} + 3\overline{j}}{\sqrt{13}}$$

E.
$$\frac{\overline{i} + 2\overline{j}}{\sqrt{5}}$$

- 4. A particle is moving with acceleration $4\overline{j} + 6t\overline{k}$. If the position at time t = 1 is $\overline{r}(1) = \overline{i} + 3\overline{j} + \overline{k}$ and the velocity at time t = 0 is $\overline{v}(0) = \overline{i} + \overline{j}$, then the position at time t = 2 is
 - A. $4\bar{i} + 10\bar{j} + 10\bar{k}$ B. $\bar{i} + 4\bar{j} + 10\bar{k}$ C. $\bar{i} + \frac{8}{3}\bar{j} + 4\bar{k}$ D. $2\bar{i} + 10\bar{j} + 8\bar{k}$ E. $2\bar{i} + 8\bar{j} + 8\bar{k}$

5. Which of the following surfaces represents the graph of $z = \frac{x^2}{4} + y^2$ in the 1st octant.

6. If $f(x,y) = \frac{3x^2 + yx}{x^2 + y^2}$, $(x,y) \neq (0,0)$, let ℓ be the limit of f(x,y) as $(x,y) \rightarrow (0,0)$ along the y-axis, and let m be the limit of f(x,y) as $(x,y) \rightarrow (0,0)$ along the line y = x. Then

A. $\ell = 3, m = 2$ B. $\ell = 0, m = 2$ C. $\ell = 0, m = \frac{3}{2}$ D. $\ell = 3, m = 3$ E. $\ell = \frac{1}{2}, m = \frac{1}{2}$

7. Find a value of a for which the function $z = 4\cos(x + ay)$ satisfies $\frac{\partial^2 z}{\partial y^2} = 9 \frac{\partial^2 z}{\partial x^2}.$

> A. a = 2B. a = 0C. $a = \frac{1}{2}$ D. a = 1E. a = 3

8. Find the maximal directional derivative of $f(x,y,z)=e^x+e^y+e^{2z}$ at (1,1,-1).

A. $e\sqrt{3-2e}$ B. $\sqrt{2e^2 + 4e^{-4}}$ C. $\frac{1}{e}\sqrt{2-4e^{-3}}$ D. $\sqrt{2e^2 + e^{-4}}$ E. $\sqrt{e^2 + 2e^{-4}}$

9. Find symmetric equations of the line containing (1, 2, 3) and perpendicular to the plane 2x + 3y - z = 8.

10. Find the length of the curve $\bar{r}(t) = \frac{t^2}{2}\bar{i} + 7\bar{j} + \frac{t^3}{3}\bar{k}, 0 \le t \le 2.$

11. (a) Complete the following definition of f_y at (0,0):

$$f_y(0,0) = \lim_{h \to 0}$$

(b) If
$$f(x,y) = \begin{cases} \frac{x+y^3}{3x^2+4y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, compute $f_y(0,0)$ by evaluating the above limit.

$$f_y(0,0) =$$

12. A right circular cylinder has a radius and altitude that vary with time. At a certain instant the altitude is increasing at 0.5 ft/sec and the radius is decreasing at 0.2 ft/sec. How fast is the volume changing if at this time the radius is 20 feet and the altitude is 60 feet.