1. Find the equation of the plane containing $(0,1,2)$ and whose normal is perpendicular to both $\bar{a}=\bar{i}+\bar{j}, \bar{b}=\bar{j}-\bar{k}$.
A. $x+y+z=3$
B. $-x+y+z=3$
C. $x-y-z=3$
D. $x+y+z=-3$
E. None of the above
2. The distance between the plane

$$
2 x+y+2 z=4
$$

and the point $(1,7,2)$ is
A. 1
B. 2
C. 3
D. 4
E. None of the above
3. A unit tangent vector to the graph of $y=2 x^{3}$ at $(1,2)$ is given by
A. $\frac{\bar{i}+6 \bar{j}}{\sqrt{37}}$
B. $\frac{\bar{i}+4 \bar{j}}{\sqrt{17}}$
C. $\frac{\bar{i}-\bar{j}}{\sqrt{2}}$
D. $\frac{2 \bar{i}+3 \bar{j}}{\sqrt{13}}$
E. $\frac{\bar{i}+2 \bar{j}}{\sqrt{5}}$
4. A particle is moving with acceleration $4 \bar{j}+6 t \bar{k}$. If the position at time $t=1$ is $\bar{r}(1)=\bar{i}+3 \bar{j}+\bar{k}$ and the velocity at time $t=0$ is $\bar{v}(0)=\bar{i}+\bar{j}$, then the position at time $t=2$ is
A. $4 \bar{i}+10 \bar{j}+10 \bar{k}$
B. $\bar{i}+4 \bar{j}+10 \bar{k}$
C. $\bar{i}+\frac{8}{3} \bar{j}+4 \bar{k}$
D. $2 \bar{i}+10 \bar{j}+8 \bar{k}$
E. $2 \bar{i}+8 \bar{j}+8 \bar{k}$

MA 261 TEST 1

Name
5. Which of the following surfaces represents the graph of $z=\frac{x^{2}}{4}+y^{2}$ in the 1 st octant.
6. If $f(x, y)=\frac{3 x^{2}+y x}{x^{2}+y^{2}},(x, y) \neq(0,0)$, let ℓ be the limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ along the y-axis, and let m be the limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ along the line $y=x$. Then
A. $\ell=3, \quad m=2$
B. $\ell=0, \quad m=2$
C. $\ell=0, \quad m=\frac{3}{2}$
D. $\ell=3, \quad m=3$
E. $\ell=\frac{1}{2}, \quad m=\frac{1}{2}$
7. Find a value of a for which the function $z=4 \cos (x+a y)$ satisfies $\frac{\partial^{2} z}{\partial y^{2}}=9 \frac{\partial^{2} z}{\partial x^{2}}$.
A. $a=2$
B. $a=0$
C. $a=\frac{1}{2}$
D. $a=1$
E. $a=3$
8. Find the maximal directional derivative of

$$
f(x, y, z)=e^{x}+e^{y}+e^{2 z}
$$

at $(1,1,-1)$.
A. $e \sqrt{3-2 e}$
B. $\sqrt{2 e^{2}+4 e^{-4}}$
C. $\frac{1}{e} \sqrt{2-4 e^{-3}}$
D. $\sqrt{2 e^{2}+e^{-4}}$
E. $\sqrt{e^{2}+2 e^{-4}}$
9. Find symmetric equations of the line containing $(1,2,3)$ and perpendicular to the plane $2 x+3 y-z=8$.

MA 261 TEST 1

Name
10. Find the length of the curve

$$
\bar{r}(t)=\frac{t^{2}}{2} \bar{i}+7 \bar{j}+\frac{t^{3}}{3} \bar{k}, 0 \leq t \leq 2 .
$$

11. (a) Complete the following definition of f_{y} at $(0,0)$:

$$
f_{y}(0,0)=\lim _{h \rightarrow 0}
$$

(b) If $f(x, y)=\left\{\begin{array}{ll}\frac{x+y^{3}}{3 x^{2}+4 y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$, compute $f_{y}(0,0)$ by evaluating the above limit.
$f_{y}(0,0)=$
12. A right circular cylinder has a radius and altitude that vary with time. At a certain instant the altitude is increasing at $0.5 \mathrm{ft} / \mathrm{sec}$ and the radius is decreasing at $0.2 \mathrm{ft} / \mathrm{sec}$. How fast is the volume changing if at this time the radius is 20 feet and the altitude is 60 feet.

