MA 261 - Test 1

Attack to the second se		
Name	TA:	
Name		

Instructions

- 1. There are 16 multiple choice problems each of which is worth 6 points except the last problem is worth 10 points.
- 2. Use a #2 pencil to fill in the little circles on the mark-sense sheet.
- 3. Be sure that you fill in the correct division-section number. Ask your TA in case of doubt.
- Do all your work on the space provided for each problem. No calculator or books are allowed.
- 5. Return this booklet and your mark-sense sheet to your Recitation Instructor.

Test1, MA 261

- 1. Find x so that the vector $\mathbf{a} = \mathbf{i} + 2x\mathbf{j} + x^2\mathbf{k}$ is perpendicular to $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.
 - A. x=1
 - B. x=0
 - C. x = 2
 - D. x = -2
 - E. x = -1
- 2. Find x > 0 so that the area of the triangle with vertices (0,0,0), (1,1,1), (x,2x,3x)is 1. x =

 - В.
 - C.
 - D.

3. Determine a so that the line
$$\frac{x-3}{a} = \frac{y+5}{2} = \frac{z+1}{4}$$

is parallel to the plane 2x + 3y - 5z = 14. a =

- A. 7
- B. 3
- C. -4
- D. -5
- E. -14

- 4. The vector valued function $\mathbf{r}(t) = \langle 2\sin t, 4\cos t, 6 \rangle$, $-\pi \leq t \leq \pi$, describes
 - A. circle in a horizontal plane
 - B. circle in a vertical plane
 - C. ellipse in a horizontal plane
 - D. ellipse in a vertical plane
 - E. spiral in a horizontal plane

5. In spiral coordinates the equations

$$arphi=rac{\pi}{2}, \qquad heta=rac{\pi}{2}$$

describes

A. a sphere

- B. a cone
- C. a plane
- D. a circle
- E. the positive y-axis
- 6. The graph of $\mathbf{r}(t) = \langle \cos^2 t, \sin t, |t| \rangle$, $0 \le t \le \frac{3\pi}{2}$, looks most like

D. **

7. One vector parallel to the tangent to the curve

$$x = 4\sqrt{t}, \ y = t^2 - 2, \ z = \frac{4}{t}$$

at the point (4, -1, 4) is

- A. $4\mathbf{i} 9\mathbf{j} + 4\mathbf{k}$
- B. $8\mathbf{i} + 6\mathbf{j} + \mathbf{k}$
- C. 2i + 2j 4k
- D. $4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$
- E. $3\mathbf{i} 2\mathbf{j} + 6\mathbf{k}$

8. The length of the curve

$$x=1-2t^2, y=4t, z=3+2t^2, 0 \le t \le 2$$

is given by which integral

- A. $\int_0^2 16\sqrt{t^2+2} \, dt$
- B. $\int_0^2 \sqrt{8t^4 + 4t^2} \, dt$
- $C. \quad \int_0^2 \sqrt{8t+4} \, dt$
- $D. \quad \int_0^2 4\sqrt{2t^2+1} \, dt$
- $E. \int_0^2 4 dt$

- 9. The curvature of the curve $\mathbf{r}(t) = t\mathbf{i} + te^t\mathbf{j}$ at t = 0 is
- A. $\frac{1}{\sqrt{2}}$
- B. $\sqrt{2}$
- $C. \quad \frac{1}{2}$
- D. 0
- $E. \quad \frac{1}{2\sqrt{2}}$

10. The level curves of $f(x,y) = x - \frac{y}{x}$ are

- A. ellipses
- B. lines
- C. circles
- D. parabolas
- E. hyperbolas

11. Let $f(x,y) = \frac{x^2y}{x^2 + y^2}, (x,y) \neq (0,0).$

Which value of f(0,0) makes f continuous at (0,0).

- A. 1
- B. 0
- C. 2
- D. -1
- E. no value

12. If $f(x,y) = \ln \sqrt{x^2 + y^2}$, find $f_x(1,2)$.

- A. $\frac{1}{10}$
- B. $\frac{2}{5}$
- C. $\frac{1}{5}$
- $D. \quad \frac{1}{\sqrt{5}}$
- E. $\frac{2}{\sqrt{5}}$
- 13. Which of the following points belongs to the tangent plane to $z = \ln(x+y)$ at (2, -1, 0).
 - A. (1,1,1)
 - B. (2,1,3)
 - C. (2,0,2)
 - D. (0,1,-1)
 - E. (3, -2, 1)
- 14. Find a vector function s(t) whose graph is the tangent line to

$$\mathbf{r}(t) = \langle t^2, \ln t, t \rangle$$

at the point (1, 0, 1). s(t) =

- A. (1+2t,1+t,1+t)
- B. $\langle 2t, t, t \rangle$
- C. (1+t, 1+2t, 1+t)
- D. $\langle t, 1+2t, t \rangle$
- E. $\langle 1+2t, t, 1+t \rangle$

15. If g and f are differentiable functions of two variables and

$$g(s,t) = f(s-t^2, s-t^2),$$

then
$$\frac{tg_s(s,t)}{g_t(s,t)}$$
 equals

- A. 0
- B. $-\frac{1}{2}$
- C. -1
- D. st
- E. 1

- 16. Let $z = 2u^2 + v w^2$, $u = \frac{x}{2} \cos y$, $v = x \sin y$, and w = f(x, y). When x = 1, $y = \pi$ it is known that w = 2, $\frac{\partial w}{\partial x} = -1$, and $\frac{\partial w}{\partial y} = 1$. Find $\frac{\partial z}{\partial x}$ when x = 1, $y = \pi$.
 - A. 5
 - B. $\frac{7}{5}$
 - C. -5
 - $D. \quad \frac{9}{2}$
 - E. -3