## Answer Key: DCAC DADB ECBB

1. Find all values of $x$ so that the vectors $\mathbf{a}=(x,-3,1), \mathbf{b}=(x, x, 2)$ are perpendicular. The correct values of $x$ are
2. The equation of the plane perpendicular to the line

$$
\frac{x-1}{-2}=\frac{y-1}{3}=z
$$

A. $x+y-z=1$
B. $2 x-3 y+z=0$
C. $-2 x+3 y+z=2$
D. $2 x+3 y-z=4$
E. $3 x-2 y+z=2$
5. The surface whose equation in spherical coordinates is $\phi=\pi$ represents
A. a plane
B. a cone with axis the $z$-axis
C. the $x y$ plane
D. the negative $z$ axis
E. the $z$ axis
6. Let $L$ be the line tangent to the curve $\mathbf{r}(t)=\left(\ln t, 2 \sqrt{t}, t^{2}\right)$ at $(0,2,1)$. Then when $L$ passes through the point $(3, y, z)$, we have
A. $y=5$ and $z=7$
B. $y=3$ and $z=3$
C. $y=7$ and $z=5$
D. $y=3$ and $z=6$
E. $y=4$ and $z=5$
7. The curve $\mathbf{r}(t)=\left(e^{2 t},-e^{t}\right),-\infty<t<\infty$, has a graph most like
8. Let a particle move on the curve $\mathbf{r}(t)=5 t \mathbf{i}+(1-3 t) \mathbf{j}+(5+$ $4 t) \mathbf{k}$, starting when $t=0$. After it has gone a distance 2 , the $x$ coordinate is
A. 10
B. $\sqrt{2}$
C. $5 \sqrt{2}$
D. $1 / 10$
E. $5 / \sqrt{2}$
9. Let $u=e^{2 x} \sin (x y)$. Then $u_{x y}=$
A. $e^{2 x}((x+1) \cos (x y)-x y \sin (x y))$
B. $e^{2 x}((x+1) \cos (x y)+x y \sin (x y))$
C. $e^{2 x}(-(x+1) \cos (x y)-x y \sin (x y))$
D. $e^{2 x}((2 x+1) \cos (x y)+x y \sin (x y))$
E. $e^{2 x}((2 x+1) \cos (x y)-x y \sin (x y))$
10. Let $\Pi$ be the tangent plane to the paraboloid $z=x^{2}+2 y^{2}+6$ at
A. $z=1$ the point $(1,1,9)$. Then $\Pi$ intersects the $z$-axis when
B. $z=2$
C. $z=3$
D. $z=4$
E. $z=5$
11. The level curve $f(x, y)=2$ of the function $f(x, y)=x^{2}-y^{2}+8 x-7$ is
A. a parabola
B. a hyperbola
C. two lines
D. an ellipse but not a circle
E. a circle
12. The trajectory of a moving particle is given by

$$
\mathbf{r}(t)=\left(t^{2} / 2-t, \cos (t-1), \ln (1+t)-t / 2\right)
$$

When the speed is zero, the acceleration $\mathbf{a}$ is
A. $(0,0,0)$
B. $\left(1,-1,-\frac{1}{4}\right)$
C. $\left(1,-1, \frac{1}{4}\right)$
D. $\left(1,1,-\frac{1}{4}\right)$
E. $\left(1,1, \frac{1}{4}\right)$

