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1. Compute the limit if it exists.

lim
(x,y)→(1,−2)

y4 + x2y4 − 16− 16x2

y2 − 4

A. 12

B. −8

C. 0

D. 8

E. 16

F. The limit does not exist.

2. (0, 0) and (1,−3) are critical points of the function f(x, y) = x2y2 + 6x2y − 2xy2 − 12xy.
Choose the correct classification of these two points from the answer choices below.

A. Two local minimums.

B. Two local maximums.

C. One local maximum and one saddle point.

D. One local minimum and one saddle point.

E. One local maximum and one local minimum.

F. Two saddle points.
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3. In planes parallel to and distinct from the xy-plane, the traces of the quadric surface

z = x2 − 4y2

are:

A. Parabolas

B. Hyperbolas

C. Circles

D. Non-circular ellipses

E. Isolated points

F. Lines

4. Find a parameterization of the line tangent to the graph of the vector-valued function

r⃗(t) = ⟨t cos(πt), t sin(πt), t2⟩

at the point r⃗(1) = ⟨−1, 0, 1⟩.

A. ℓ(t) = ⟨−t,−πt, 2t⟩
B. ℓ(t) = ⟨−1 + πt,−t, 1 + 2t⟩
C. ℓ(t) = ⟨−1− t,−π, 2 + t⟩
D. ℓ(t) = ⟨−1 + πt,−πt, 1 + 2t⟩
E. ℓ(t) = ⟨−πt, 0, 2t⟩
F. ℓ(t) = ⟨−1− t,−πt, 1 + 2t⟩
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5. Find the maximum rate of increase (in any direction) at the point (2, 1, 1) for the function

f(x, y, z) = x ln |y|+ 1

z
.

A.
√
2

B.
√
5

C.
√
3

D.
√
6

E. 1

F. 2

6. Let f(x, y) = xy + yx for x ≥ 0 and y ≥ 0. Compute fx(2, 3).

A. 21

B. 18

C. 9 ln 3 + 8 ln 2

D. 12 + 9 ln 3

E. 6 + 8 ln 2

F. 17
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7. If v⃗ and w⃗ are vectors in R3, then

v⃗ × (|v⃗|w⃗ − v⃗)

is equivalent to which of the following?

A. −|v⃗|(w⃗ × v⃗)

B. −|v⃗|(w⃗ × v⃗)− |v⃗|2

C. |v⃗|(w⃗ × v⃗)− v⃗

D. |v⃗|(w⃗ × v⃗)− |v⃗|2

E. −|v⃗|(w⃗ × v⃗)− v⃗

F. |v⃗|(w⃗ × v⃗)

8. Find the arc length of the curve given by the vector-valued function

r⃗(t) = ⟨t2, sin t− t cos t, cos t+ t sin t⟩.

from t = 0 to t = 1.

A. 2
√
5

B.
√
5

C.

√
5

2

D.
√
3− 1

E.
√
3

F. 3
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9. Find a parametrization for the line of intersection between x+2y+3z = 4 and−2x−y+z = 1.

A. ⟨−2,−1, 1⟩+ t⟨1, 2, 3⟩
B. ⟨3,−4, 3⟩+ t⟨−5, 5,−3⟩
C. ⟨1, 2, 3⟩+ t⟨−2,−1, 1⟩
D. ⟨5,−7, 3⟩+ t⟨−2, 3, 0⟩

E. ⟨1
7
, 0,

9

7
⟩+ t⟨3, 3, 2⟩

F. ⟨−2, 3, 0⟩+ t⟨5,−7, 3⟩

10. Find projv⃗u⃗, the orthogonal projection of u⃗ onto v⃗, where u⃗ = 4⃗ı+ ȷ⃗+2k⃗ and v⃗ = ı⃗− ȷ⃗+ k⃗.

A.
5

21

(
4⃗ı+ ȷ⃗+ 2k⃗

)
B.

5

3

(
4⃗ı+ ȷ⃗+ 2k⃗

)
C.

5

21

(⃗
ı− ȷ⃗+ k⃗

)
D.

1√
3

(⃗
ı− ȷ⃗+ k⃗

)
E.

5

3

(⃗
ı− ȷ⃗+ k⃗

)
F.

1√
3

(
4⃗ı+ ȷ⃗+ 2k⃗

)
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11. Suppose f(x, y, z) = ex(y + z). Suppose that x, y, and z are each functions of the variables
s and t with the following values when s = 0 and t = 0:

x = 0,
∂x

∂t
= 2, y = 1,

∂y

∂t
= 3, z = 2,

∂z

∂t
= 4.

Find
∂f

∂t
when s = 0 and t = 0.

A. 13

B. 9

C. 6

D. 24

E. 0

F. 11

12. Find the plane tangent to the elliptic cone

y2 + 4z2 = x2

at (5, 3,−2).

A. 5x− y − 4z = 30

B. 5x− 3y − 8z = 32

C. 5x− 3y + 8z = 0

D. 5x+ 3y − 2z = 38

E. x+ 3y − 2z = 18

F. x− y − 4z = 10
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