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1. The shortest distance from (1, 1, 0) to the plane x+ y + z = 1 is

A.
√

3/2

B.
√

3

C.
√

3/4

D.
√

3/3

E. 3

2. The maximum (M) and minimum (m) values of f(x, y) = 2x+6y subject to the constraint
x2 + y2 = 10 are

A. M = 12 and m = −12

B. M = 20 and m = −20

C. M = 20 and m = −12

D. M = 12 and m = −20

E. M = 20 and no minimum value.
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3. We can approximate the double integral

∫ 6

0

∫ 6

0

x+ y

3
dy dx with a Riemann sum by

partitioning the region D = {(x, y)|0 ≤ x ≤ 6, 0 ≤ y ≤ 6} into four equal squares. And
if we choose the upper right corner of each square as the sample point, which of the
following is the approximated value of the double integral?

A. 144

B. 108

C. 72

D. 48

E. 36

4. Change the order of integration and evaluate∫ 1

0

∫ 1

√
x

ey
3

dy dx

A. 1
2
e

B. 1
2
(e− 1)

C. 1
3
e

D. 1
3
(e− 1)

E. e
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5. Which of the following integrals represents the volume of a solid under z = x2 + y2 and
above the region x2 + y2 = 49?

A.

∫ 2π

0

∫ 49

0

r3 dr dθ

B.

∫ π/2

0

∫ 49

7

r2 dr dθ

C.

∫ 2π

0

∫ 7

0

r3 dr dθ

D. 2

∫ π

0

∫ 7

0

r2 dr dθ

E. 4

∫ π

π/2

∫ 49

7

r dr dθ

6. What is the mass of a lamina in the shape of a triangle with vertices (0, 0), (1, 0), and
(0, 2) if the material density at a point is equal to 1

2
of the point’s distance from the line

x = 1?

A. 1
3

B. 1
6

C. 1
2

D. 1
4

E. 1
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7. Rewrite the iterated integral

∫ 1

0

∫ x2

0

∫ y

0

f(x, y, z) dz dy dx by changing the order of in-

tegration to first with respect to x, then z, and then y.

A.

∫ 1

0

∫ y

0

∫ 1

√
y

f(x, y, z) dx dz dy

B.

∫ x2

0

∫ y

0

∫ 1

0

f(x, y, z) dx dz dy

C.

∫ 1

0

∫ y

0

∫ 1

0

f(x, y, z) dx dz dy

D.

∫ 1

0

∫ 1

y

∫ 1

√
y

f(x, y, z) dx dz dy

E.

∫ 1

0

∫ 1

y

∫ √
y

0

f(x, y, z) dx dz dy

8. Evaluate the triple integral

∫∫∫
V

2z dV, where V is bounded by z = 2 − x2 − y2 and

z = 1.

A. π

B. 4π
3

C. 1 + 2π
3

D. 2π
3

E. 1 + 4π
3
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9. Let E be the solid region bounded by two surfaces whose equations in cylindrical coordi-
nates are z = 10− r2 and z = 2 + r2. Find the volume of E.

A. 32π

B. 8π

C. 18π

D. 12π

E. 16π

10. Compute the integral ∫∫∫
E

6e(x
2+y2+z2)3/2 dV

where E is the solid region bounded by the sphere x2 + y2 + z2 = 2.

A. 8π(e8 − 1)

B. 4π(e2
√
2 − 1)

C. 3π(e4 − 1)

D. 8π(e2
√
2 − 1)

E. 4π(e8 − 1)
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11. Let f(x, y, z) = x2 + xy+ z4− z and let (a, b, c) be a point where ∇f(a, b, c) = 〈3, 5,−5〉.
Find the value of a+ b− c.

A. −3

B. −2

C. −1

D. 0

E. 1

12. The graph below most closely resembles the gradient vector field of which function?

A. f(x, y) = xey

B. f(x, y) = yex

C. f(x, y) =
y

x

D. f(x, y) = x2 + y2 + 10

E. f(x, y) = y2 − x2 − 10
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