Name
tudent ID Number
vecture
Recitation Instructor

Instructions:

- 1. This exam contains 10 problems, each worth 10 points.
- 2. Please supply all information requested above on the mark-sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the scantron. Also circle your choice for each problem in this booklet.
- 4. No books, notes, or calculator, please.

- 1. The set of all critical points of $f(x,y) = x^2 + y^2 x^2y + 4$ is
 - A. $\{(0,0),(0,1)\}$
 - B. $\{(0,0),(\sqrt{2},1)\}$
 - C. $\{(\sqrt{2},1),(-\sqrt{2},1)\}$
 - D. $\{(0,0), (\sqrt{2},1), (-\sqrt{2},1)\}$
 - E. $\{(0,0),(0,1),(\sqrt{2},1),(-\sqrt{2},1)\}$

- 2. The function $f(x,y) = 2x^3 + xy^2 6x^2 + y^2$ has critical points at P(0,0) and Q(2,0). Which of the following is true?
 - A. f has a local max at P and a local min at Q.
 - B. f has a saddle point at P and a local max at Q.
 - C. f has a saddle point at P and a local min at Q.
 - D. f has a local max at P and a saddle point at Q.
 - E. f has a local min at P and a local max at Q.

- 3. Find the surface area of the part of the plane $\sqrt{2}x + y + z = 6$ that lies inside the cylinder $x^2 + y^2 = 2$.
 - A. 2π
 - B. 4π
 - C. $2\sqrt{2}\pi$
 - D. $3\sqrt{2}\pi$
 - E. 3π

- 4. If D is the region between the curves $y=x^2$ and $y=2x-x^2$ the value of $\iint_D x \, dA$ is:
 - A. 0
 - B. $\frac{1}{3}$
 - C. $\frac{1}{4}$
 - D. $\frac{1}{12}$
 - E. $\frac{1}{6}$

5. By reversing the order of integration, we get $\int_0^2 \int_{x^2}^4 x^3(\sin y) \, dy \, dx = \int_0^a \int_b^c x^3(\sin y) \, dx \, dy$ with:

A.
$$a = 2, b = \sqrt{y}, c = 2$$

B.
$$a = 2$$
, $b = 0$, $c = y^2$

C.
$$a = 4, b = 0, c = y$$

D.
$$a = 4, b = 0, c = \sqrt{y}$$

E.
$$a = 4, b = \sqrt{y}, c = 2$$

6. The volume of the solid under the graph of f(x,y) = x + 2y and above the region bounded by x = 0, y = 0, and y = 1 - x is:

A.
$$\frac{1}{4}$$

C.
$$\frac{1}{2}$$

D.
$$\frac{5}{2}$$

7. Evaluate the integral

$$\iint\limits_R e^{x^2+y^2} \, dA$$

where R is the region in the first quadrant bounded by y = 0, y = x, $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.

- A. $\frac{\pi}{4}(e^4-1)$
- B. $\pi(e^6 e)$
- C. $\pi(e^9 e)$
- D. $\frac{\pi}{2}(e^3-1)$
- E. $\frac{\pi}{8}(e^9 e)$

- 8. Find the coordinate \overline{x} of the center of mass of a lamina in the first quadrant bounded by x = 0, y = 0, and $x^2 + y^2 = 4$ whose density at (x, y) is equal to the distance to the origin.
 - A. $\frac{\pi}{2}$
 - B. $\frac{3}{\pi}$
 - C. $\frac{3}{2}$
 - D. $\frac{4}{\pi}$
 - E. $\frac{\pi}{\sqrt{3}}$

- 9. If we use the method of Lagrange multipliers to find the maximum of $f(x,y) = 2x^2 y^2$ subject to the constraint $x^2 + y^2 = 1$, the Lagrange multipliers λ that we find are:
 - A. only $\lambda = 2$
 - B. only $\lambda = 0$
 - C. only $\lambda = -1$
 - D. $\lambda = 2$ and $\lambda = -1$
 - E. $\lambda = 0$ and $\lambda = -1$

- 10. Find the volume of the solid region bounded below by $z = \sqrt{x^2 + y^2}$ and on the top by $x^2 + y^2 + z^2 = 1$.
 - A. $(2-\sqrt{2})\frac{\pi}{3}$
 - B. $\frac{2\pi}{3}$
 - C. $\frac{4\pi}{3}$
 - D. $(2 \sqrt{3})\frac{\pi}{2}$
 - E. $\frac{3\pi}{4}$