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1. A cube is given by the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and has density function

δ = x+yz. Find the x-coordinate for the cube’s center of mass, given that

∫∫∫
cube

δ dV =
3

4
.

A. x =
7

12

B. x =
2

3

C. x =
1

2

D. x =
5

9

E. x =
11

18

F. x =
9

16

2. A helix curve, C, is parametrized by ~r(t) = 〈cos t, sin t, t〉, for 0 ≤ t ≤ π

2
.

Compute the line integral ∫
C

xy ds

A.
√

2

B.

√
2

2
C. 0

D.
π

2
E. π

F.
1

2

2



3. Five of these six triple integrals are over the same region of space: the tetrahedron pictured
below with vertices at (0, 0, 0), (0, 0, 1), (1, 0, 0) and (1, 1, 0). One of these triple integrals is
over a different region. Which one is different?

A.

∫ 1

0

∫ 1−z

0

∫ 1−z

y

f(x, y, z) dx dy dz

B.

∫ 1

0

∫ 1−x

0

∫ x

0

f(x, y, z) dy dz dx

C.

∫ 1

0

∫ 1−z

0

∫ x

0

f(x, y, z) dy dx dz

D.

∫ 1

0

∫ y

0

∫ 1−x

0

f(x, y, z) dz dx dy

E.

∫ 1

0

∫ 1−y

0

∫ 1−z

y

f(x, y, z) dx dz dy

F.

∫ 1

0

∫ x

0

∫ 1−x

0

f(x, y, z) dz dy dx

4. Which vector field corresponds to the one pictured here?

A. ~F (x, y) = 〈1,−y〉

B. ~F (x, y) = 〈−x, y〉

C. ~F (x, y) = 〈−y, x〉

D. ~F (x, y) = 〈1, y〉

E. ~F (x, y) = 〈y, 1〉

F. ~F (x, y) = 〈−y, 1〉

3



5. Find

∫
C

~F · ~T ds, where ~F (x, y, z) = 〈yez, ey + xez, xyez〉 on some smooth oriented curve C

that goes from (0, 0, 0) to (−1, 1, 1).

A. e

B. −1

C. 0

D. −e
E. 1

F. Impossible to answer without knowing C.

6. Choose the triple integral in spherical coordinates that represents the volume of the solid
bounded by the cone z2 = x2 + y2 and lying between the planes z = 1 and z = 2. You do
not need to compute the volume.

A.

∫ 2π

0

∫ 2
√
2

1

∫ π/4

0

ρ2 sinφ dφ dρ dθ

B.

∫ 2π

0

∫ π/4

0

∫ 2 secφ

secφ

dρ dφ dθ

C.

∫ 2π

0

∫ 2

1

∫ π/4

0

dφ dρ dθ

D.

∫ 2π

0

∫ π/4

0

∫ 2 secφ

secφ

ρ2 sinφ dρ dφ dθ

E.

∫ 2π

0

∫ 2

1

∫ π/4

0

ρ2 sinφ dφ dρ dθ

F.

∫ 2π

0

∫ 2
√
2

1

∫ π/4

0

dφ dρ dθ
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7. Find the absolute maximum value, M , and the absolute minimum value, m, of the function
f(x, y) = x+ y subject to the constraint x2 − xy + y2 = 1.

A. M = 2 and m = −2

B. M = 1 and m = −1

C. M = 1 and m = −4

D. M = 2 and m = −1

E. M = 4 and m = −2

F. M = 4 and m = −4

8.

∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ 1

−1
(x2 + y2)3/2 dz dx dy

A.
2π

7

B.
2π

5

C.
4π

5

D.
4π

7

E.
π

2
F. π
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9.

∫ √π
0

∫ √π−y2

0

sin(x2 + y2) dx dy

Hint: polar

A.
π

8

B.
π

6

C.
π

4
D. π

E.
π

3

F.
π

2

10. Change the order of integration for the double integral

∫ 2

0

∫ 2x

x2
f(x, y) dy dx. You do not

need to compute the integral.

A.

∫ 4

0

∫ y/2

√
y

f(x, y) dx dy

B.

∫ 2

0

∫ y/2

√
y

f(x, y) dx dy

C.

∫ 2x

x2

∫ 2

0

f(x, y) dx dy

D.

∫ 2

0

∫ √y
y/2

f(x, y) dx dy

E.

∫ 2

0

∫ x2

2x

f(x, y) dx dy

F.

∫ 4

0

∫ √y
y/2

f(x, y) dx dy
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11. Given the force field ~F (x, y, z) = 〈y, z, x〉, find the work required to move an object along
the straight line segment from (0, 0, 0) to (2, 3, 4).

A. 13

B. 9

C. 29

D. 26

E. 18

F.
29

2

12. Use Green’s Theorem to evaluate

∫
C

x dx + (x2 + y2) dy where C is the boundary of the

rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3), oriented counterclockwise.

A. 4

B. 24

C. 12

D. 16

E. 6

F. 8
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